リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Determinants of Microbial-Derived Dissolved Organic Matter Diversity in Antarctic Lakes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Determinants of Microbial-Derived Dissolved Organic Matter Diversity in Antarctic Lakes

Kida, Morimaru Merder, Julian Fujitake, Nobuhide Tanabe, Yukiko Hayashi, Kentaro Kudoh, Sakae Dittmar, Thorsten 神戸大学

2023.04.04

概要

Identifying drivers of the molecular composition of dissolved organic matter (DOM) is essential to understand the global carbon cycle, but an unambiguous interpretation of observed patterns is challenging due to the presence of confounding factors that affect the DOM composition. Here, we show, by combining ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, that the DOM molecular composition varies considerably among 43 lakes in East Antarctica that are isolated from terrestrial inputs and human influence. The DOM composition in these lakes is primarily driven by differences in the degree of photodegradation, sulfurization, and pH. Remarkable molecular beta-diversity of DOM was found that rivals the dissimilarity between DOM of rivers and the deep ocean, which was driven by environmental dissimilarity rather than the spatial distance. Our results emphasize that the extensive molecular diversity of DOM can arise even in one of the most pristine and organic matter source-limited environments on Earth, but at the same time the DOM composition is predictable by environmental variables and the lakes’ ecological history.

この論文で使われている画像

参考文献

(1) Hedges, J. I.; Keil, R. G.; Benner, R. What happens to terrestrial

organic matter in the ocean? Org. Geochem. 1997, 27, 195−212.

(2) Gledhill, M.; Hollister, A.; Seidel, M.; Zhu, K.; Achterberg, E. P.;

Dittmar, T.; Koschinsky, A. Trace metal stoichiometry of dissolved

organic matter in the Amazon plume. Sci. Adv. 2022, 8, No. eabm2249.

(3) Kellerman, A. M.; Dittmar, T.; Kothawala, D. N.; Tranvik, L. J.

Chemodiversity of dissolved organic matter in lakes driven by climate

and hydrology. Nat. Commun. 2014, 5, 3804.

(4) Riedel, T.; Zark, M.; Vähätalo, A. V.; Niggemann, J.; Spencer, R.

G. M.; Hernes, P. J.; Dittmar, T. Molecular signatures of

biogeochemical transformations in dissolved organic matter from

ten world rivers. Front. Earth Sci. 2016, 4, 85.

(5) Kothawala, D. N.; Stedmon, C. A.; Müller, R. A.; Weyhenmeyer,

G. A.; Köhler, S. J.; Tranvik, L. J. Controls of dissolved organic matter

quality: evidence from a large-scale boreal lake survey. Glob. Chang.

Biol. 2014, 20, 1101−1114.

(6) Williams, C. J.; Yamashita, Y.; Wilson, H. F.; Jaffé, R.;

Xenopoulos, M. A. Unraveling the role of land use and microbial

activity in shaping dissolved organic matter characteristics in stream

ecosystems. Limnol. Oceanogr. 2010, 55, 1159−1171.

5472

https://doi.org/10.1021/acs.est.3c00249

Environ. Sci. Technol. 2023, 57, 5464−5473

Environmental Science & Technology

pubs.acs.org/est

composition and dynamics in a subtropical mangrove river driven by

rainfall. Estuar. Coast Shelf Sci. 2019, 223, 6−17.

(28) Lam, B.; Simpson, A. J. Direct 1H NMR spectroscopy of

dissolved organic matter in natural waters. Analyst 2008, 133, 263−

269.

(29) Kida, M.; Sato, H.; Okumura, A.; Igarashi, H.; Fujitake, N.

Introduction of DEAE Sepharose for isolation of dissolved organic

matter. Limnology 2019, 20, 153.

(30) Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A simple and

efficient method for the solid-phase extraction of dissolved organic

matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 2008,

6, 230−235.

(31) Green, N. W.; Perdue, E. M.; Aiken, G. R.; Butler, K. D.; Chen,

H.; Dittmar, T.; Niggemann, J.; Stubbins, A. An intercomparison of

three methods for the large-scale isolation of oceanic dissolved

organic matter. Mar. Chem. 2014, 161, 14−19.

(32) Koch, B. P.; Dittmar, T. From mass to structure: an aromaticity

index for high-resolution mass data of natural organic matter. Rapid

Commun. Mass Spectrom. 2016, 30, 250.

(33) Flerus, R.; Lechtenfeld, O. J.; Koch, B. P.; McCallister, S. L.;

Schmitt-Kopplin, P.; Benner, R.; Kaiser, K.; Kattner, G. A molecular

perspective on the ageing of marine dissolved organic matter.

Biogeosciences 2012, 9, 1935−1955.

(34) R Core Team. R. A Language and Environment for Statistical

Computing; R Foundation for Statistical Computing: Vienna, Austria,

2019.

(35) Mentges, A.; Feenders, C.; Seibt, M.; Blasius, B.; Dittmar, T.

Functional Molecular Diversity of Marine Dissolved Organic Matter

Is Reduced during Degradation. Front. Mar. Sci. 2017, 4, 9.

(36) Riedel, T.; Dittmar, T. A method detection limit for the analysis

of natural organic matter via Fourier transform ion cyclotron

resonance mass spectrometry. Anal. Chem. 2014, 86, 8376−8382.

(37) LaRowe, D. E.; Van Cappellen, P. Degradation of natural

organic matter: A thermodynamic analysis. Geochim. Cosmochim. Acta

2011, 75, 2030−2042.

(38) Lin, J. Divergence measures based on the Shannon entropy.

IEEE Trans. Inf. Theory 1991, 37, 145−151.

(39) Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R;

Use R!; Springer International Publishing; Cham, 2018.

(40) Oksanen, J.; Simpson, G.; Blanchet, G.; Kindt, R.; Legendre, P.;

Minchin, P.; O’Hara, R. B.; Solymos, P.; Stevens, H.; Szoecs, E.;

Wagner, H.; Barbour, M.; Bedward, M.; Bolker, B.; Borcard, D.;

Carvalho, G.; Chirico, M.; De Caceres, M.; Durand, S.; Evangelista,

H.; FitzJohn, R.; Friendly, M.; Furneaux, B.; Hannigan, G.; Hill, O.;

Lahti, L.; McGlinn, D.; Ouellette, M.; Cunha, C.; Smith, T.; Stier, A.;

Ter Braak, J.; Weedon, J. Vegan: Community Ecology Package, 2019.

(41) Roberts, D. W. Labdsv: Ordination and Multivariate Analysis for

Ecology, 2019.

(42) Dufrene, M.; Legendre, P. Species assemblages and indicator

species: The need for a flexible asymmetrical approach. Ecol. Monogr.

1997, 67, 345.

(43) Benjamini, Y.; Hochberg, Y. Controlling the false discovery

rate: A practical and powerful approach to multiple testing. J. R. Stat.

Soc. Ser. B 1995, 57, 289−300.

(44) Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive

Partitioning: A Conditional Inference Framework. J. Comput. Graph.

Stat. 2006, 15, 651−674.

(45) Mantel, N. The detection of disease clustering and a

generalized regression approach. Cancer Res. 1967, 27, 209−220.

(46) Legendre, P.; Legendre, L. Interpretation of ecological

structures. Numerical Ecology, 3rd ed.; Elsevier, 2012; Chapter 10.

(47) Hijmans, R. J.; Karney, C.; Williams, E.; Vennes, C. Geosphere:

Spherical Trigonometry, 2021.

(48) Schwarz, G. Estimating the dimension of a model. Ann. Stat.

1978, 6, 461.

(49) Rigby, R. A.; Stasinopoulos, D. M. Generalized additive models

for location, scale and shape (with discussion). J. R. Stat. Soc. Ser. C

Appl. Stat. 2005, 54, 507−554.

Article

(50) Lüdecke, D. ggeffects: Tidy Data Frames of Marginal Effects

from Regression Models. J. Open Source Softw. 2018, 3, 772.

(51) Rigby, R. A.; Stasinopoulos, D. M. Generalized additive models

for location, scale and shape (with discussion). J. R. Stat. Soc. Ser. C

Appl.Stat. 2005, 54, 507−554.

(52) Pautler, B. G.; Simpson, A. J. A. J.; Simpson, M. J.; Tseng, L.H.; Spraul, M.; Dubnick, A.; Sharp, M. J.; Fitzsimons, S. J.; Simpson,

M. J.; Tseng, L.-H.; et al. Detection and structural identification of

dissolved organic matter in Antarctic glacial ice at natural abundance

by SPR-W5-WATERGATE 1H NMR spectroscopy. Environ. Sci.

Technol. 2011, 45, 4710−4717.

(53) Fichot, C. G.; Benner, R. The spectral slope coefficient of

chromophoric dissolved organic matter (S275-295) as a tracer of

terrigenous dissolved organic carbon in river-influenced ocean

margins. Limnol. Oceanogr. 2012, 57, 1453−1466.

(54) Helms, J. R.; Stubbins, A.; Ritchie, J. D.; Minor, E. C.; Kieber,

D. J.; Mopper, K. Absorption spectral slopes and slope ratios as

indicators of molecular weight, source, and photobleaching of

chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53,

955−969.

(55) Stubbins, A.; Dittmar, T. Illuminating the deep: Molecular

signatures of photochemical alteration of dissolved organic matter

from North Atlantic Deep Water. Mar. Chem. 2015, 177, 318−324.

(56) Riedel, T.; Biester, H.; Dittmar, T. Molecular Fractionation of

Dissolved Organic Matter with Metal Salts. Environ. Sci. Technol.

2012, 46, 4419−4426.

(57) Timko, S. A.; Gonsior, M.; Cooper, W. J. Influence of pH on

fluorescent dissolved organic matter photo-degradation. Water Res.

2015, 85, 266−274.

(58) Gomez-Saez, G. V.; Dittmar, T.; Holtappels, M.; Pohlabeln, A.

M.; Lichtschlag, A.; Schnetger, B.; Boetius, A.; Niggemann, J.

Sulfurization of dissolved organic matter in the anoxic water column

of the Black Sea. Sci. Adv. 2021, 7, No. eabf6199.

(59) Gomez-Saez, G. V.; Pohlabeln, A. M.; Stubbins, A.; Marsay, C.

M.; Dittmar, T. Photochemical Alteration of Dissolved Organic Sulfur

from Sulfidic Porewater. Environ. Sci. Technol. 2017, 51, 14144−

14154.

5473

https://doi.org/10.1021/acs.est.3c00249

Environ. Sci. Technol. 2023, 57, 5464−5473

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る