リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ヒト表皮ケラチノサイトにおけるEntada phaseoloidesの葉からのフェノール化合物の抗光毒性」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ヒト表皮ケラチノサイトにおけるEntada phaseoloidesの葉からのフェノール化合物の抗光毒性

ミットラパブ, ヤニサ YANISA, MITTRAPHAB 九州大学

2022.03.23

概要

Entada phaseoloides (Family: Fabaceae) is a huge evergreen liana that grows high in the tropical forests and is native in Africa, Asia, and Australia’s lowland coastal forests. In Southeast Asia and tropical regions, E. phaseoloides is a well-known traditional medicinal plant and the components and biological activities (such as anti-inflammatory activity and antioxidant) of the seeds and stems have been investigated in many studies. In 1989, the first report, E. phaseoloides leaves yielded entadamide C, a sulphur-containing amide that was isolated and described. In other studies, the isolated compounds from E. phaseoloides seeds and stems such as quercetin, luteolin, apigenin, and dihydrokaempferol have been reported. However, few data are available on compounds isolated from E. phaseoloides leaves.

The human skin is the body's most exposed organ, and it protects the body from a range of environmental afflictions. The sun's ultraviolet (UV) radiation is a form of high-energy electromagnetic radiation that is considered phototoxic to all organisms. UV-B (280-315 nm) is a large part of the solar UV. While it is ineffective in penetrating into the deep skin layer, it particularly influences the epidermis (the skin’s superficial layer which mostly comprises of keratinocytes). UV-B irradiation has been linked to skin inflammation due to oxidative stress caused by reactive oxygen species (ROS). The oxidative processes induced by ROS results in lipid peroxidation, DNA mutations and damage of membrane protein that play a key role in skin aging. Over the past years, the development of natural products and flavonoids have drawn attention as protective agents for preventing against UVB-induced skin damage via scavenging ROS. Thus, this study focused on isolation and identification of active compounds from acetone extract of E. phaseoloides leaves (AE) and investigation of their anti-phototoxicities in keratinocytes (HaCaT cells).

In preliminary screening, the several biological activities of E. phaseoloides extracts (70% EtOH, EtOH, 70% MeOH, MeOH, acetone, and ethyl acetate, respectively) on HaCaT cell line have been investigated (e.g., circadian rhythm, cytotoxicity). The results showed that acetone extract significantly increased the expression of clock genes, Per1 in HaCaT cells after addition of acetone extract at 12 h, while Bmal1 was weakly expressed. The other extracts were less active on the expression of Per1 and Bmal1 genes.
The antioxidant and protective effect of AE on UV-B irradiated HaCaT cells was investigated. AE showed antioxidant activity in DPPH and ABTS assay with IC50 values of 125.4±35.7 and 704.6±56.0 μg/mL, respectively. AE at a concentration of 40 μg/mL increased cell viability of the UV-B damaged cells. Thus, AE was selected for further isolation and identification of the active compounds.

The characteristic profile of AE was investigated with LC-DAD-MS. Eleven compounds were identified or proposed in AE by based on their retention times, UV, and the accurate mass values, as well as comparisons with the reference standard compounds. Among of these compounds, gallic acid (1), protocatechuic acid (2), 4-hydroxybenzoic acid (3), (-)-epicatechin (4), luteolin-7-O-β-D-glucoside (5), luteolin (7), quercetin (8), (+)-dihydrokaempferol (9), apigenin (10) and kaempferol (11) were confirmed by comparison with authentic standards. On the other hand, the AE was also separated by various chromatographic techniques such as open column chromatography, MPLC and preparative TLC, to obtain six compounds. The chemical structure of isolated compounds, protocatechuic acid (2), 4-hydroxybenzoic acid (3), luteolin-7-O-β-D-glucoside (5), cirsimaritin (6), (+)-dihydrokaempferol (9), and apigenin (10) were confirmed by NMR and MS data.

The cytotoxicity of isolated/standard compounds on normal HaCaT cells were evaluated by using MTT assay. The results showed that compounds 7 and 10 (100 μM) have toxicity to HaCaT cells while all the other compounds showed no toxicity. The phototoxicity of UV-B irradiation was evaluated with 30 mJ/cm2. The protective effect against UV-B irradiation of isolated/standard compounds were determined at different concentrations of 25, 50, and 100 μM. The cell viability pre-treated with isolated/standard compounds were increased when compared with UV-B irradiation group, which indicated that pre-treatment with compounds 2, 4, and 11 protect HaCaT cells from UV-B irradiation damage. The effect of compounds 2, 4, and 11 on keratinocyte migration was assessed using an in vitro HaCaT cell scratch assay. After wounding and UV-B irradiation, at 0 and 24 h the wound area surrounded by the edges of the wound monolayer was measured. The findings revealed that compounds 2, and 4 helped to reverse the effects of UV-B on wound healing compared with non-treated group. UV-B irradiation increased the expression of COX-2 and iNOS markers in HaCaT cells in the current investigation. COX-2 and iNOS expression were investigated using RT-qPCR. Meanwhile, pre-treatment by 100 μM of compounds 2, 4, and 11 reduce expression of COX-2 and iNOS in HaCaT cells. UV-B irradiation increased iNOS expression and generation of its reactive product in HaCaT cells, which were successfully protected by pre-treatment with compounds 2, 4, and 11 at 100 μM.

In conclusion, the anti-phototoxicity effect of isolated/standard compounds from AE on HaCaT cells were evaluated using MTT assay. Protocatechuic acid (2), (-)-epicatechin (4), and kaempferol (11) from AE showed that the inhibition of UV-B induced inflammation, which includes the improved expression of COX-2, and iNOS gene. Moreover, protocatechuic acid (2), and (-)-epicatechin (4) could potently enhanced cell migration during wound closure. The results suggest that acetone extract of E. phaseoloides leaves and their active compounds, protocatechuic acid (2), (-)-epicatechin (4), and kaempferol (11) are potential agents for treating photoaging.

この論文で使われている画像

参考文献

[1] Johnson, T.A.; Sohn, J.; Inman, W.D.; Estee, S.A.; Loveridge, S.T.; Vervoot, H.C.; Tenney K.; Liu, J.; Kean-Hooi Ang, K.; Ratnam, J.; Bray, W.M.; Gassner, N.C.; Shen, Y.Y.; Lokey, R.S.; McKerrow, J.H.; Boundy-Mills, K.; Nukanto, A.; Kanti, A.; Julistiono, H.; Kardono, L.B.S.; Bjeldanes, L.F.; Crwes, P. Natural product libraries to accelerate the high-throughput discovery of therapeutic leads. J. Nat. Prod. 2011, 74(12), 2545-2555. DOI: https://doi.org/10.1021/np200673b

[2] Cragg, G.M.; Newman, D.J. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013, 1830(6), 3670-3695. DOI: https://doi.org/10.1016/j.bbagen.2013.02.008

[3] Dini, I.; Laneri, S. The new challenge of green cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules. 2021, 26, 3921-3948. DOI: https://doi.org/10.3390/molecules26133921

[4] Dini, I; Laneri, S. The New Challenge of Green Cosmetic: Natural Food Ingredients for Cosmetic Formulations. Molecules. 2021, 26, 3921. DOI: https://doi.org/ 10.3390/molecules26133921

[5] Reinke, J.M.; Sorg H. Wound Repair and Regeneration. Eur. Surg. Res. 2012, 49, 35-43. DOI: https://doi.org/10.1159/000339613

[6] Maione, F.; Russo, R.; Khan, H.; Mascolo, N. Medicinal plants with anti– inflammatory activities. Nat. Prod. Res. 2016, 30, 1343–1352. DOI: https://doi.org/10.1080/14786419.2015.1062761

[7] Rusu, M.A.; Simedrea, R.; Gheldiu, A.M.; Mocan, A.; Vlase, L.; Popa, D.S.; Ferreira, I.C.F.R. Benefits of tree nut consumption on aging and age–related diseases: Mechanisms of actions. Trends Food Sci. Technol. 2019, 88, 104–120. DOI: https://doi.org/10.1016/j.tifs.2019.03.006

[8] Elwood, J.M.; Jopson, J. Melanoma and sun exposure: An overview of published studies. Int. J. Cancer. 1997, 73, 198–203.

[9] Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. DOI: https://doi.org/10.1111/j.1365-4632.2010.04474.x

[10] Lee, C.-H.; Wu, S.-B.; Hong, C.-H.; Yu, H.-S.; Wei, Y.-H. Molecular mechanisms of UV–induced apoptosis and its effects on skin residential cells: The implication in UV–based phototherapy. Int. J. Mol. Sci. 2013, 14, 6414–6435. DOI: https://doi.org/10.3390/ijms14036414

[11] Schuch, A.P.; Moreno, N.C.; Schuch, N.J.; Menck, C.F.M.; Garcia, C.C.M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic. Biol. Med. 2017, 107, 110–124. DOI: https://doi.org/10.1016/j.freeradbiomed.2017.01.029

[12] Britt, A.B. Repair of DNA damage induced by ultraviolet radiation. Plant. Physiol. 1995, 108, 891. DOI: https://doi.org/10.1104/pp.108.3.891

[13] Mohania, D.; Chendel, S.; Kumar, P.; Verma, V.; Digvijak, K.; Tripathi, D.; Choudhury, K.; Mitten, S.K.; Shah, D. Ultraviolet radiations: Skin defense–damage mechanism. Adv. Exp. Med. Biol. 2017, 996, 71–87. DOI: https://doi.org/10.1007/978-3-319-56017-5_7

[14] Li, W.; Yu, J.; Xiao, X.; Li, W.; Zang, L.; Han, T.; Zhang, D.; Niu, X. The inhibitory effect of (-)-Epicatechin gallate on the proliferation and migration of vascular smooth muscle cells weakens and stabilizes atherosclerosis. Eur. J. Pharmacol. 2021, 891, 173761. DOI: https://doi.org/10.1016/j.ejphar.2020.173761

[15] Mruphree, R.W. Impariments in skin integrity. Nurs Clin North Am. 2017 52, 405- 417. DOI: https://doi.org/10.1016/j.cnur.2017.04.008

[16] Elwood, J.M.; Jopson, J. Melanoma and sun exposure: An overview of published studies. Int. J. Cancer 1997, 73, 198–203.

[17] Fuchs, E.; Raghavan, S. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 2002, 3, 199–209 DOI: https://doi.org/10.1038/nrg758

[18] Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 2013, 504, 277–281. DOI: https://doi.org/10.1038/nature12783

[19] Hunt, K.J.; Hung, S.K.; Ernst, E. Botanical extracts as anti- aging preparations for the skin: A systematic review. Drugs Aging. 2010, 27, 973-85. DOI: https://doi.org/10.2165/11584420-000000000-00000

[20] Arct, J.; Pytkowska, K. Flavonoids as components of biologically active cosmeceuticals. Clinics in Dermatology. 2008. 26, 347-357. DOI: https://doi.org/10.1016/j.clindermatol.2008.01.004

[21] Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric. (Curcuma longa). J Altern Complement Med. 2003, 9, 161-168. DOI: https://doi.org/10.1089/107555303321223035

[22] Maffei Facino, R.; Carini, M.; Aldini, G.; Bombardelli, E.; Morazzoni, P.; Morelli, R. Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. Amechanism for their capillary protective action. Arzneimittelforschung. 1994, 44, 592-601.

[23] Hrenn, A.; Steinbrecher, T.; Labahn, A.; Schwager, J.; Schempp, C.M.; Merfort, I. Plant phenolics inhibit neutrophil elastase. Planta Med. 2006, 72, 1127-1131.

[24] Kanashiro, A.; Souza, J.G.; Kabeya, L.M.; Azzolini, A.E.; Lucisano-Valim, Y.M. Elastase release by stimulated neutrophils inhibited by flavonoids: Importance of the catechol group. Z Naturforsch C J Biosci. 2007, 62, 357-361. DOI: https://doi.org/10.1515/znc-2007-5-607

[25] Isenburg, J.C.; Simionescu, D.T.; Starcher, B.C.; Vyavahare, N.R. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation. 2007, 115, 1729-1737.

[26] Foss, S.R.; Nakamura, C.V.; Ueda-Nakamura, T.; Cortez, D.A.G.; Endo, E.H.; Filho, B.P.D. Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 32. DOI: https://doi.org/10.1186/s12941-014-0032-6

[27] Caruso, A.; Barbarossa, A.; Tassone,A.; Ceramella, J.; Carocci, A.; Catalano, A.; Basile, G.; Fazio, A.; Iacopetta, D.; Franchini, C.; et al. Pomegranate: Nutraceutical with Promising Benefits on Human Health. Appl. Sci. 2020, 10, 6915. DOI: https://doi.org/10.3390/app10196915

[28] Turrini, F.; Malaspina, P.; Giordani, P.; Catena, S.; Zunin, P.; Boggia, R. Traditional Decoctionand PUAE Aqueous Extracts of Pomegranate Peels as Potential Low-Cost Anti-Tyrosinase Ingredients. Appl. Sci. 2020, 10, 2795. DOI: https://doi.org/10.3390/app10082795

[29] Kanlayavattanakul, M.; Chongnativisit, W.; Chaikul, P.; Lourith, N. Phenolic–rich Pomegranate Peel Extract: InVitro, Cellular, and In Vivo Activities for Skin Hyperpigmentation Treatment. Planta Med. 2020, 86, 749–759. DOI: https://doi.org/10.1055/a-1170-7785

[30] Bogdan, C.; Iurian, S.; Tomuta, I.; Moldovan, M.L. Improvement of skin condition in striae distensae: Development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract. Drug Des. Dev. Ther. 2017, 11, 521–531. DOI: https://doi.org/10.2147/dddt.s128470

[31] Bae, J.-Y.; Choi, J.-S.; Kang, S.-W.; Lee, Y.-J.; Park, J.; Kang, Y.-H. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV–B irradiation. Exp. Dermatol. 2010, 19, e182–e190. DOI: https://doi.org/10.1111/j.1600-0625.2009.01044.x

[32] Wagner, W. L., D. R. Herbst, and D. H. Lorence

[33] Kitamura S.; Murata G (1971) Gensyokunihonsyokubutsuzukan. Hoikusha 1:362

[34] Sugimoto, S.; Matsunami, K.; Otsuka, H. Biological activity of Entada phaseoloides and Entada rheedei. Journal of Natural Medicines. 2018, 72, 12-19. DOI: https://doi.org/10.1007/s11418-017-1146-x

[35] Barua, A.K. Triterpeniods III: The constitution of entagenic acid. Naturwissenschaften. 1956, 43, 250. DOI: https://doi.org/10.1007/BF00617587

[36] Barua A.K.; Chakrabarti P.; Pal S.K.; Das B. The structure and stereochemistry of entagenic acid. J Indian Chem Soc. 1983, 47, 195–198.

[37] Okada, Y.; Shibata, S.; Kamo, O.; Okuyama, T. Carbon-13 NMR spectral studies of entagenic acid to establish its structure. Chem Pharm Bull. 1988, 36, 5028–5030. DOI: https://doi.org/10.1248/cpb.36.5028

[38] Ikegami, F.; Shibasaki, I.; Ohmiya, S.; Ruangrungsi, N.; Murakoshi, I; Entadamide A, a new sulfur-containing amide from Entada phaseoloides seeds. Chem Pharm Bull. 1985, 33, 5153–5154. DOI: https://doi.org/10.1248/cpb.33.5153

[39] Ikegami, F.; Ohmiya, S.; Ruangrungsi, N.; Sakai, S.; Murakoshi, I. Entadamide B, a second new sulfur-containing amide from Entada phaseoloides. Phytochemistry. 1987, 26, 1525–1526. DOI: https://doi.org/10.1016/S0031-9422(00)81850-6

[40] Ikegami, F.; Sekine, T.; Duangteraprecha, S.; Matsushita, N.; Matsuda, N.; Ruangrungsi, N.; Murakoshi, I. Entadamide C, a sulfur- containing amide from Entada phaseoloides. Phytochemistry, 1989, 28, 881–882. DOI: https://doi.org/10.1016/0031-9422(89)80135-9

[41] Dong, Y.; Shi, H.; Yang, H.; Peng, Y.; Wang, M.; Li, X. Antioxidant phenolic compounds from the stems of Entada phaseoloides. Chem Biodivers. 2012, 9, 68– 79. DOI: https://doi.org/10.1002/cbdv.201100002

[42] Park, J.; Woo, Y.K.; Cho, H.J. Regulation of Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptosis Activity of Advanced Cooling Composition (ACC) in UVB- Irradiated Human HaCaT Keratinocytes, Int. J. Mol. Sci. 2020, 21, 6527-6545. DOI: https://doi.org/10.3390/ijms21186527

[43] Ulrich, A.; Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell, 1990, 61, 203-212.

[44] Gross, S.; Knebel, A.; Tenev T.; Neininger, A.; Gaestel, M.; Herrlich, P.; Böhmer, F.D. Inactivation of protein- tyrosine phosphatases as mechanism of UV-induced signal transduction. Journal of Biological Chemistry, 1999, 274, 26378–26386. DOI: https://doi.org/10.1074/jbc.274.37.26378

[45] Fisher, G. J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photo- aging and chronological skin aging, Arch Dermatol. 2002, 138, 1462–1470. DOI: https://doi.org/10.1001/archderm.138.11.1462

[46] Matsumura, Y.; Ananthaswamy, H. N. Toxic effects of ultraviolet radiation on the skin Toxicol Appl Pharmacol. 2004, 159, 298–308. DOI: https://doi.org/10.1016/j.taap.2003.08.019

[47] Komatsu, T.; Sasaki, S.; Manabe, Y.; Hirata, T.; Sugawara, T. Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One. 2017, 12, article e0171178. DOI: https://doi.org/10.1371/journal.pone.0171178

[48] Shaulian, E.; Karin, M. AP-1 as a regulator of cell life and death. Nature Cell Biology. 2002, 4, E131–E136.

[49] Schuler, M.; Green, D.R. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans. 2001, 29, 684–688. DOI: https://doi.org/10.1042/0300-5127:0290684

[50] Petruk, G.; Giudice, R.D.; Rigano, M.M.; Maria, D. Antioxidants from Plants Protect against Skin Photoaging. Oxid Med Cell Longev. 2018, 2, 1454936. DOI: https://doi.org/10.1155/2018/1454936

[51] Godic, A.; Poljšak, B.; Adamic, M.; Dahmane, R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev. 2014, 860479. DOI: https://doi.org/10.1155/2014/860479

[52] Cătană, C.S.; Atanasov, A.G.; Berindan-Neagoe, I. Natural products with anti- aging potential: affected targets and molecular mechanisms, Biotechnol Adv. 2018, 36, 1649-1656. DOI: https://doi.org/10.1016/j.biotechadv.2018.03.012

[53] Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.C.; Stuppner, H.; Jansen- Dürr, P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology. 2017, 18, 499–516. DOI: https://doi.org/10.1007/s10522-017-9715-7

[54] Kostyuk, V.; Potapovich, A.; Albuhaydar, A.R.; Mayer, W.; De Luca, C.; Korkina, L. Natural substances for prevention of skin photoaging: screening systems in the development of sunscreen and rejuvenation cosmetics. Rejuvenation Res. 2018, 21, 91-101. DOI: https://doi.org/10.1089/rej.2017.1931

[55] Katsube, T.; Tabata, H.; Ohta, Y.; Yamasaki, Y.; Anuurad, E.; Shiwaku, K.; Yamane, Y. Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu assay. J. Agric. Food Chem. 2004, 52, 2391-2396. DOI: https://doi.org/10.1021/jf035372g

[56] González-Palma, I.; Escalona-Buendía, H.B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V. K.; Díaz-Godínez, G.; Soriano-Santos, J. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front. Microbiol. 2016, 7, 1-9. DOI: https://dx.doi.org/10.3389%2Ffmicb.2016.01099

[57] Gerlier, D.; Thomasset, N. Use of MTT colorimetric assay to measure cell activation. J. Immunol Methods. 1986, 94, 57-63. DOI: https://doi.org/10.1016/0022-1759(86)90215-2

[58] Amen, Y.M.; Zhu, Q.; Afifi M.S.; Halim, A.F.; Ashour, A.; Shimizu, K. New cytotoxic lanostanoid triterpenes from Ganoderma lingzhi. Phytochemistry Letters, 2016, 17, 64-70. DOI: https://doi.org/10.1016/j.phytol.2016.07.024

[59] Reppert, S. M.; Weaver, D. R. Coordination of circadian timing in mammals. Nature. 2002, 418, 935–941. DOI: https://doi.org/10.1038/nature00965

[60] Wilking, M.; Ndiaye, M.; Mukhtar H.; Ahmad N. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid. Redox Signal. 2013, 19, 192–208. DOI: https://dx.doi.org/10.1089%2Fars.2012.4889

[61] Cleaver, J. E. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J. Dermatol. Sci. 2000, 23, 1–11. DOI: https://doi.org/10.1016/s0923-1811(99)00088-2

[62] Gaddameedhi, S.; Selby, C. P.; Kaufmann, W. K.; Smart R. C.; Sancar, A. Control of skin cancer by the circadian rhythm. Proc. Natl Acad. Sci. U S A. 2011, 108, 18790–18795. DOI: https://doi.org/10.1073/pnas.1115249108

[63] Gracia, S. M. T.; Heinonen, M.; Frankel, E. N. Antioxidant activity of anthocyanin in LDL and lecithin liposome systems. J. Agric. Food. Chem. 1997, 45, 3362–3367.

[64] Singleton, V. L.; Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture. 1965, 16, 144–158.

[65] Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chemistry. 2005, 89, 411–420. DOI: http://dx.doi.org/10.1016/j.foodchem.2004.02.051

[66] Mensour, L.L.; Menezes, F.S.; Leitao, G.G.; Reis, A.S.; Dos Santos, T.C.; Coube, C. S. Screening of Brazilian plant extracts for antioxidant activity by use of DPPH free radical method. Phytotherapy Research, 2011, 15, 127–130. DOI: https://doi.org/10.1002/ptr.687

[67] Havsteen, B.H. The biochemistry and medical significance of flavonoids. Pharmacology & Therapeutics. 2002, 96, 67–202. DOI: https://doi.org/10.1016/s0163-7258(02)00298-x

[68] Fotie, J. The antiprotozoan potential of flavonoids: a review. Pharmacogn Rev. 2008, 2, 6–19.

[69] Buenger, J.; Ackermann, H.; Jentzsch, A.; Mehling, A.; Pfitzner, I.; Reiffen, K. A.; Schroeder, K. R.; Wollenweber, U. An interlaboratory comparison of methods used to assess antioxidant potentials. Int. J. Cosmet. Sci. 2006, 28, 135–146.

[70] Li, H. B.; Wong, C. C.; Cheng, K. W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT. 2008, 41, 385–390.

[71] Chen, F.; Tang, Y.; Sun, Y.; Veeraraghavan, V.P.; Mohan, S.K.; Cui, C. 6-shogaol, an active constituents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating NrF2 signaling in human epidermal keratinocytes (HaCaT cells). J. Photochem Photobiol B. 2019, 197, 111518-111524. DOI: https://doi.org/10.1016/j.jphotobiol.2019.111518

[72] Nzowa, LK.; Barboni, L.; Teponno, R.B.; Ricciutelli, M.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Tapondjou, L.A. Rheediinosides A and B two antiproliferative and antioxidant triterpene saponins from Entada rheedii. Phytochemistry. 2010, 71, 254- 261. DOI: https://doi.org/10.1016/j.phytochem.2009.10.004

[73] He, Y.; Hu, Y.; Jiang, X.; Chen, T.; Ma, Y.; Wu, S.; Sun, J.; Jiao, R.; Li, X.; Deng, L.; Bai, W. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. J. Photochem Photobiol B. 2017, 177, 24-31. DOI: https://doi.org/10.1016/j.jphotobiol.2017.10.006

[74] Zhu, X.; Li, N.; Wang, Y.; Li, D.; Chen, J.; Yu, Y.; Shi, X. Protective effects of quercetin on UVB-irradiation-induced cytotoxicity through ROS clearance in keratinocyte cells. Oncol. Rep. 2017, 37, 209-218. DOI: https://doi.org/10.3892/or.2016.5217

[75] Calabrese, V.; Cornelius, C.; Maiolino, L.; Luca, M.; Chiaramonte, R.; Toscano, M.A.; Serra, A. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of vitagenes. Neurochemical Research. 2010, 35, 2208- 2217. DOI: https://doi.org/10.1007/s11064-010-0304-2

[76] Cornelius, C.; Perrotta, R.; Graziano, A.; Calabrese, E.J.; Calabrese, V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi”. Immunity and Ageing, 2013, 10, 15. DOI: https://doi.org/10.1186/1742-4933-10-15

[77] Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007, 8, 766-775. DOI: https://doi.org/10.1038/nrn2214

[78] Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants Redox Signaling. 2010, 13, 1763-1811. DOI: https://dx.doi.org/10.1089%2Fars.2009.3074

[79] Marabini, L.; Melzi, G.; Lolli, F.; Dell’Agli, M.; Piazza, S.; Sangiovanni, E.; Marinovich, M.; Effects of Vitis vinifera L. leaves extract on UV radiation damage in human keratinocytes (HaCaT). J. Photochem. Photobiol. B Biol. 2020, 204, 111810–111817. DOI: https://doi.org/10.1016/j.jphotobiol.2020.111810

[80] Wang, L.; Oh, J.Y.; Kim, Y.S.; Lee, H.G.; Lee, J.S.; Jeon, Y.J. Anti-photoaging and Anti-Melanogenesis Effects of Fucoidan Isolated from Hizikia fusiforme and Its Underlying Mechanisms. Mar. Drugs. 2020, 18, 427–438. DOI: https://dx.doi.org/10.3390%2Fmd18080427

[81] Sobeh, M.; El-Raey, M.; Rezq, S.; Abdelfattah, M.A.; Petruk, G.; Osman, S.; El- Shazly, A.M.; El-Beshbishy, H.A.; Mahmoud, M.F.; Wink, M. Chemical profiling of secondary metabolites of Eugenia uniflora and their antioxidant, anti- inflammatory, pain killing and anti-diabetic activities: A comprehensive approach. J. Ethnopharmacol. 2019, 240, 111939–111950. DOI: https://doi.org/10.1016/j.jep.2019.111939

[82] Sobeh, M.; Petruk, G.; Osman, S.; El Raey, M.A.; Imbimbo, P.; Monti, D.M.; Wink, M. Isolation of myricitrin and 3, 5-di-O-methyl gossypetin from Syzygium samarangense and evaluation of their involvement in protecting keratinocytes against oxidative stress via activation of the Nrf-2 pathway. Molecules. 2019, 24, 1839–1852. DOI: https://dx.doi.org/10.3390%2Fmolecules24091839

[83] Okba, M.M.; El Awdan, S.A.E.; Yousif, M.F.; El Deeb, K.S.; Soliman, F.M. Entada rheedii seeds thioamides, phenolics, and saponins and its antiulcerogenic and antimicrobial activities. J. Appl. Pharm. Sci. 2018, 8, 101–108. DOI: http://doi.org/10.7324/JAPS.2018.8513

[84] Cho, J.Y.; Moon, J.H.; Seong, K.Y.; Park, K.H. Antimicrobial Activity of 4- Hydroxybenzoic Acid and trans 4-Hydroxycinnamic Acid Isolated and Identified from Rice Hull. Biosci. Biotechol. Biochem. 1998, 62, 2273–2276. DOI: https://doi.org/10.1271/bbb.62.2273

[85] Jibril, S.; Sirat, H.M.; Basar, N. Bioassay-Guided Isolation of Antioxidants and α- Glucosidase Inhibitors from the Root of Cassia sieberiana D.C. (Fabaceae). Rec. Nat. Prod. 2017, 11, 406–410.

[86] Ragasa, C.Y.; Pendon, Z.; Sngalang, V.; Rideout, J.A.; Antimicrobial Flavones from Coleus amboinicuc. Philipp. J. Sci. 1999, 128, 347–351.

[87] Qian, Z.M.; Li, H.J.; Ping, L.; Rena, M.T.; Tang, D. Simultaneous Qualitation and Quantification of Thirteen Bioactive Compounds in Flos Lonicerae by High- Performance Liquid Chromatography with Diode Array Detector and Mass Spectrometry. Biol. Pharm. Bull. 2007, 55, 1073–1076. DOI: https://doi.org/10.1248/cpb.55.1073

[88] Liu, W.; Kong, Y.; Zu, Y.; Fu, Y.; Luo, M.; Zhang, L. Determination and quantification of active phenolic compounds in pigeon pea leaves and its medicinal product using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2010, 1217, 4723–4731.

[89] Song, X.; Bi, Z.; Xu, A. Green tea polyphenol epigallocatechin-3-gallate inhibits the expression of nitric oxide synthase and generation of nitric oxide induced by ultraviolet B in HaCaT cells. Chin. Med. J. 2006, 119, 282–287.

[90] Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov, 2006, 5, 493–506. DOI: https://doi.org/10.1038/nrd2060

[91] Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci. 2016, 5, e47. DOI: https://dx.doi.org/10.1017%2Fjns.2016.41

[92] Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: a privileged structure in medicinal chemistry. Chem Rev. 2017, 117, 7762–7810. DOI: https://doi.org/10.1021/acs.chemrev.7b00020

[93] Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010, 2, 1231–1246. DOI: https://doi.org/10.3390/nu2121231

[94] Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 2018, 28, 436–453. DOI: https://doi.org/10.1016/j.tcb.2018.02.001

[95] López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell. 2013, 153, 1194–1217. DOI: https://dx.doi.org/10.1016%2Fj.cell.2013.05.039

[96] Barbosa, M.C.; Grosso, R.A.; Fader, C.M. Hallmarks of aging: an autophagic perspective. Front Endocrinol, 2019, 9, 790. DOI: https://doi.org/10.3389/fendo.2018.00790

[97] Höhn, A.; Weber, D.; Jung, T.; Ott, C.; Hugo, M.; Kochlik, B.; Kehm, R.; König, J.; Grune, T.; Castro, J.P. Happily (n) ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017, 11, 482–501. DOI: https://dx.doi.org/10.1016%2Fj.redox.2016.12.001

[98] Gonzalez-Gallego, J.; Garcia-Mediavilla, V.; Sanchen-Campos, S.; Tunon, M.J. Fruit polyphenols, immunity and inflammation. British Journal of Nutrition. 2010, 104, 15-27. DOI: https://doi.org/10.1017/s0007114510003910

[99] Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci. 2016, 5, e47. DOI: https://dx.doi.org/10.1017%2Fjns.2016.41

[100] Saewan, N.; Jimtaison, A. Photoprotection of natural flavonoids. J.App.Pharm.Sci. 2013, 3, 129-141. DOI: http://doi.org/ 10.7324/JAPS.2013.3923

[101] Wang, X.; Cao, Y.; Chen, S.; Kin, J.; Bian, J.; Huang, D. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship. J. Agric. Food. Chem. 2021, 69, 7285-7302. DOI: https://doi.org/10.1021/acs.jafc.1c02015

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る