リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Columnar Grain Growth of Lead-Free Double Perovskite Using Mist Deposition Method for Sensitive X-ray Detectors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Columnar Grain Growth of Lead-Free Double Perovskite Using Mist Deposition Method for Sensitive X-ray Detectors

Haruta, Yuki Wada, Shinji Ikenoue, Takumi Miyake, Masao Hirato, Tetsuji 京都大学 DOI:10.1021/acs.cgd.1c00331

2021.07

概要

The sensitivity of X-ray detectors can be effectively improved by forming a columnar grain structure in the photoconductive layer, given that few grain boundaries exist across the direction of electron–hole pair collection. Herein, we demonstrate the fabrication of Cs₂AgBiBr₆ films with columnar grain structures using the mist deposition method. An X-ray detector based on a 92 μm-thick Cs₂AgBiBr₆ film with columnar grains exhibits a high sensitivity of 487 μC Gyair⁻¹ cm⁻², which is the highest among detectors based on Cs₂AgBiBr₆ polycrystalline thick films. To reveal the mechanism of columnar grain growth, we investigate the effects of deposition conditions, including the precursor solution concentration and substrate temperature. From the results, we conclude that the re-dissolution capability of the precursor solution is a key factor promoting the grain growth on the film surface, leading to columnar growth. Furthermore, we realize the columnar grain growth of a CH3NH3PbBr3 film to demonstrate the generality of the mist deposition method.

この論文で使われている画像

参考文献

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(1)

Yaffe, M. J.; Rowlands, J. A. X-Ray Detectors for Digital Radiography. Phys. Med. Biol.

1997, 42 (1), 1–39. https://doi.org/10.1088/0031-9155/42/1/001.

(2)

Sakdinawat, A.; Attwood, D. Nanoscale X-Ray Imaging. Nat. Photonics 2010, 4 (12),

840–848. https://doi.org/10.1038/nphoton.2010.267.

(3)

Kasap, S.; Frey, J. B.; Belev, G.; Tousignant, O.; Mani, H.; Greenspan, J.; Laperriere, L.;

Bubon, O.; Reznik, A.; DeCrescenzo, G.; Karim, K. S.; Rowlands, J. A. Amorphous and

Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors.

Sensors 2011, 11 (5), 5112–5157. https://doi.org/10.3390/s110505112.

(4)

Kasap, S. O. X-Ray Sensitivity of Photoconductors: Application to Stabilized a-Se. J.

Phys. D. Appl. Phys. 2000, 33 (21), 2853–2865. https://doi.org/10.1088/00223727/33/21/326.

(5)

Street, R. A.; Ready, S. E.; Van Schuylenbergh, K.; Ho, J.; Boyce, J. B.; Nylen, P.; Shah,

K.; Melekhov, L.; Hermon, H. Comparison of PbI2 and HgI2 for Direct Detection Active

Matrix x-Ray Image Sensors. J. Appl. Phys. 2002, 91 (5), 3345–3355.

https://doi.org/10.1063/1.1436298.

(6)

Shah, K. S.; Street, R. A.; Dmitriyev, Y.; Bennett, P.; Cirignano, L.; Klugerman, M.;

Squillante, M. R.; Entine, G. X-Ray Imaging with PbI2-Based A-Si:H Flat Panel

Detectors. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect.

Assoc. Equip. 2001, 458 (1–2), 140–147. https://doi.org/10.1016/S0168-9002(00)00857-3.

(7)

Brambilla, A.; Ouvrier-Buffet, P.; Rinkel, J.; Gonon, G.; Boudou, C.; Verger, L. CdTe

Linear Pixel X-Ray Detector With Enhanced Spectrometric Performance for High Flux X-

19

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Ray Imaging. IEEE Trans. Nucl. Sci. 2012, 59 (4), 1552–1558.

https://doi.org/10.1109/TNS.2012.2206828.

(8)

Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis,

T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G.

Crystal Growth of the Perovskite Semiconductor CsPbBr3 : A New Material for HighEnergy Radiation Detection. Cryst. Growth Des. 2013, 13 (7), 2722–2727.

https://doi.org/10.1021/cg400645t.

(9)

Li, J.; Du, X.; Niu, G.; Xie, H.; Chen, Y.; Yuan, Y.; Gao, Y.; Xiao, H.; Tang, J.; Pan, A.;

Yang, B. Rubidium Doping to Enhance Carrier Transport in CsPbBr3 Single Crystals for

High-Performance X-Ray Detection. ACS Appl. Mater. Interfaces 2020, 12 (1), 989–996.

https://doi.org/10.1021/acsami.9b14772.

(10)

Pan, W.; Yang, B.; Niu, G.; Xue, K.; Du, X.; Yin, L.; Zhang, M.; Wu, H.; Miao, X.; Tang,

J. Hot‐Pressed CsPbBr3 Quasi‐Monocrystalline Film for Sensitive Direct X‐ray Detection.

Adv. Mater. 2019, 31 (44), 1904405. https://doi.org/10.1002/adma.201904405.

(11)

Fan, Z.; Liu, J.; Zuo, W.; Liu, G.; He, X.; Luo, K.; Ye, Q.; Liao, C. Solution‐Processed

MAPbBr3 and CsPbBr3 Single‐Crystal Detectors with Improved X‐Ray Sensitivity via

Interfacial Engineering. Phys. status solidi 2020, 217 (9), 2000104.

https://doi.org/10.1002/pssa.202000104.

(12)

Haruta, Y.; Ikenoue, T.; Miyake, M.; Hirato, T. Fabrication of CsPbBr3 Thick Films by

Using a Mist Deposition Method for Highly Sensitive X-Ray Detection. MRS Adv. 2020, 5

(8–9), 395–401. https://doi.org/10.1557/adv.2020.8.

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(13)

Zhang, H.; Wang, F.; Lu, Y.; Sun, Q.; Xu, Y.; Zhang, B.; Jie, W.; Kanatzidis, M. G. HighSensitivity X-Ray Detectors Based on Solution-Grown Caesium Lead Bromide Single

Crystals. J. Mater. Chem. C 2020, 8 (4), 1248–1256.

https://doi.org/10.1039/C9TC05490A.

(14)

Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G. J.; Azimi, H.;

Brabec, C. J.; Stangl, J.; Kovalenko, M. V.; Heiss, W. Detection of X-Ray Photons by

Solution-Processed Lead Halide Perovskites. Nat. Photonics 2015, 9 (7), 444–449.

https://doi.org/10.1038/nphoton.2015.82.

(15)

Kim, Y. C.; Kim, K. H.; Son, D.-Y.; Jeong, D.-N.; Seo, J.-Y.; Choi, Y. S.; Han, I. T.; Lee,

S. Y.; Park, N.-G. Printable Organometallic Perovskite Enables Large-Area, Low-Dose XRay Imaging. Nature 2017, 550 (7674), 87–91. https://doi.org/10.1038/nature24032.

(16)

Huang, Y.; Qiao, L.; Jiang, Y.; He, T.; Long, R.; Yang, F.; Wang, L.; Lei, X.; Yuan, M.;

Chen, J. A-Site Cation Engineering for Highly Efficient MAPbI3 Single-Crystal X-Ray

Detector. Angew. Chemie Int. Ed. 2019, 58 (49), 17834–17842.

https://doi.org/10.1002/anie.201911281.

(17)

Wei, H.; Fang, Y.; Mulligan, P.; Chuirazzi, W.; Fang, H.-H.; Wang, C.; Ecker, B. R.; Gao,

Y.; Loi, M. A.; Cao, L.; Huang, J. Sensitive X-Ray Detectors Made of Methylammonium

Lead Tribromide Perovskite Single Crystals. Nat. Photonics 2016, 10 (5), 333–339.

https://doi.org/10.1038/nphoton.2016.41.

(18)

Wei, W.; Zhang, Y.; Xu, Q.; Wei, H.; Fang, Y.; Wang, Q.; Deng, Y.; Li, T.; Gruverman,

A.; Cao, L.; Huang, J. Monolithic Integration of Hybrid Perovskite Single Crystals with

21

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Heterogenous Substrate for Highly Sensitive X-Ray Imaging. Nat. Photonics 2017, 11 (5),

315–321. https://doi.org/10.1038/nphoton.2017.43.

(19)

Wei, H.; Huang, J. Halide Lead Perovskites for Ionizing Radiation Detection. Nat.

Commun. 2019, 10 (1), 1066. https://doi.org/10.1038/s41467-019-08981-w.

(20)

Wu, H.; Ge, Y.; Niu, G.; Tang, J. Metal Halide Perovskites for X-Ray Detection and

Imaging. Matter 2021, 4 (1), 144–163. https://doi.org/10.1016/j.matt.2020.11.015.

(21)

Zhou, Y.; Chen, J.; Bakr, O. M.; Mohammed, O. F. Metal Halide Perovskites for X-Ray

Imaging Scintillators and Detectors. ACS Energy Lett. 2021, 739–768.

https://doi.org/10.1021/acsenergylett.0c02430.

(22)

Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W.-J.; Niu, G.; Zhu,

L.; Yin, L.; Zhou, Y.; Xie, Q.; Ke, X.; Sui, M.; Tang, J. Cs2AgBiBr6 Single-Crystal X-Ray

Detectors with a Low Detection Limit. Nat. Photonics 2017, 11 (11), 726–732.

https://doi.org/10.1038/s41566-017-0012-4.

(23)

Yin, L.; Wu, H.; Pan, W.; Yang, B.; Li, P.; Luo, J.; Niu, G.; Tang, J. Controlled Cooling

for Synthesis of Cs2AgBiBr6 Single Crystals and Its Application for X‐Ray Detection.

Adv. Opt. Mater. 2019, 7 (19), 1900491. https://doi.org/10.1002/adom.201900491.

(24)

Steele, J. A.; Pan, W.; Martin, C.; Keshavarz, M.; Debroye, E.; Yuan, H.; Banerjee, S.;

Fron, E.; Jonckheere, D.; Kim, C. W.; Baekelant, W.; Niu, G.; Tang, J.; Vanacken, J.; Van

der Auweraer, M.; Hofkens, J.; Roeffaers, M. B. J. Photophysical Pathways in Highly

Sensitive Cs2AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors. Adv. Mater.

2018, 30 (46), 1804450. https://doi.org/10.1002/adma.201804450.

22

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(25)

Zhang, H.; Yang, Y.; Wang, X.; Ren, T.-L.; Gao, Z.; Liang, R.; Zheng, X.; Geng, X.;

Zhao, Y.; Xie, D.; Hong, J.; Tian, H. X-Ray Detector Based on All-Inorganic Lead-Free

Cs2AgBiBr6 Perovskite Single Crystal. IEEE Trans. Electron Devices 2019, 66 (5), 2224–

2229. https://doi.org/10.1109/TED.2019.2903537.

(26)

Yuan, W.; Niu, G.; Xian, Y.; Wu, H.; Wang, H.; Yin, H.; Liu, P.; Li, W.; Fan, J. In Situ

Regulating the Order–Disorder Phase Transition in Cs2AgBiBr6 Single Crystal toward the

Application in an X‐Ray Detector. Adv. Funct. Mater. 2019, 29 (20), 1900234.

https://doi.org/10.1002/adfm.201900234.

(27)

Li, H.; Shan, X.; Neu, J. N.; Geske, T.; Davis, M.; Mao, P.; Xiao, K.; Siegrist, T.; Yu, Z.

Lead-Free Halide Double Perovskite-Polymer Composites for Flexible X-Ray Imaging. J.

Mater. Chem. C 2018, 6 (44), 11961–11967. https://doi.org/10.1039/C8TC01564C.

(28)

Yang, B.; Pan, W.; Wu, H.; Niu, G.; Yuan, J.-H.; Xue, K.-H.; Yin, L.; Du, X.; Miao, X.S.; Yang, X.; Xie, Q.; Tang, J. Heteroepitaxial Passivation of Cs2AgBiBr6 Wafers with

Suppressed Ionic Migration for X-Ray Imaging. Nat. Commun. 2019, 10 (1), 1989.

https://doi.org/10.1038/s41467-019-09968-3.

(29)

Zhang, H.; Dun, G.; Feng, Q.; Zhao, R.; Liang, R.; Gao, Z.; Hirtz, T.; Chen, M.; Geng, X.;

Liu, M.; Huang, Y.; Zheng, X.; Qin, K.; Tan, X.; Wang, X.; Xie, D.; Yang, Y.; Tian, H.;

Zhou, Y.; Padture, N. P.; Wang, X.; Hong, J.; Ren, T.-L. Encapsulated X-Ray Detector

Enabled by All-Inorganic Lead-Free Perovskite Film With High Sensitivity and Low

Detection Limit. IEEE Trans. Electron Devices 2020, 67 (8), 3191–3198.

https://doi.org/10.1109/TED.2020.2998763.

23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(30)

Zhang, Z.; Chung, C.-C.; Huang, Z.; Vetter, E.; Seyitliyev, D.; Sun, D.; Gundogdu, K.;

Castellano, F. N.; Danilov, E. O.; Yang, G. Towards Radiation Detection Using

Cs2AgBiBr6 Double Perovskite Single Crystals. Mater. Lett. 2020, 269, 127667.

https://doi.org/10.1016/j.matlet.2020.127667.

(31)

Zhang, W.; Gong, Z.; Pan, S.; Zhang, Y.; Chen, D.; Pan, J. Growth and Photodetection

Properties of Cs2AgBiBr6 Crystals with Large Flat (111) Plane Grown from the Solution

by Adding Toluene. J. Cryst. Growth 2020, 552 (May), 125922.

https://doi.org/10.1016/j.jcrysgro.2020.125922.

(32)

Zuck, A.; Schieber, M.; Khakhan, O.; Burshtein, Z. Near Single-Crystal Electrical

Properties of Polycrystalline HgI2 Produced by Physical Vapor Deposition. In 2002 IEEE

Nuclear Science Symposium Conference Record; IEEE, 2002; Vol. 1, pp 505–509.

https://doi.org/10.1109/NSSMIC.2002.1239364.

(33)

Shih, C. T.; Huang, T. J.; Luo, Y. Z.; Lan, S. M.; Chiu, K. C. Oriented Polycrystalline αHgI2 Thick Films Grown by Physical Vapor Deposition. J. Cryst. Growth 2005, 280 (3–

4), 442–447. https://doi.org/10.1016/j.jcrysgro.2005.03.069.

(34)

Cao, X.; Zhi, L.; Li, Y.; Fang, F.; Cui, X.; Ci, L.; Ding, K.; Wei, J. Fabrication of

Perovskite Films with Large Columnar Grains via Solvent-Mediated Ostwald Ripening for

Efficient Inverted Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1 (2), 868–875.

https://doi.org/10.1021/acsaem.7b00300.

(35)

Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B.

S.; Hernandez‐Sosa, G.; Paetzold, U. W. Inkjet‐Printed Micrometer‐Thick Perovskite

24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Solar Cells with Large Columnar Grains. Adv. Energy Mater. 2020, 10 (6), 1903184.

https://doi.org/10.1002/aenm.201903184.

(36)

Chern, Y.-C.; Chen, Y.-C.; Wu, H.-R.; Zan, H.-W.; Meng, H.-F.; Horng, S.-F. Grain

Structure Control and Greatly Enhanced Carrier Transport by CH3NH3PbCl3 Interlayer in

Two-Step Solution Processed Planar Perovskite Solar Cells. Org. Electron. 2016, 38, 362–

369. https://doi.org/10.1016/j.orgel.2016.09.009.

(37)

Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J. Z.; Kim, J.; Voznyy, O.; Gong, X.; Quan,

L. N.; Tan, C. S.; Hofkens, J.; Yu, D.; Zhao, Q.; Sargent, E. H. Perovskite Seeding

Growth of Formamidinium-Lead-Iodide-Based Perovskites for Efficient and Stable Solar

Cells. Nat. Commun. 2018, 9 (1), 1607. https://doi.org/10.1038/s41467-018-04029-7.

(38)

Haruta, Y.; Ikenoue, T.; Miyake, M.; Hirato, T. Fabrication of (101)-Oriented CsPbBr3

Thick Films with High Carrier Mobility Using a Mist Deposition Method. Appl. Phys.

Express 2019, 12 (8), 085505. https://doi.org/10.7567/1882-0786/ab2c96.

(39)

Gao, W.; Ran, C.; Xi, J.; Jiao, B.; Zhang, W.; Wu, M.; Hou, X.; Wu, Z. High‐Quality

Cs2AgBiBr6 Double Perovskite Film for Lead‐Free Inverted Planar Heterojunction Solar

Cells with 2.2 % Efficiency. ChemPhysChem 2018, 19 (14), 1696–1700.

https://doi.org/10.1002/cphc.201800346.

(40)

Haruta, Y.; Ikenoue, T.; Miyake, M.; Hirato, T. One-Step Coating of Full-Coverage

CsPbBr3 Thin Films via Mist Deposition for All-Inorganic Perovskite Solar Cells. ACS

Appl. Energy Mater. 2020, 3 (12), 11523–11528. https://doi.org/10.1021/acsaem.0c01985.

25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(41)

Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A Bismuth-Halide Double

Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J.

Am. Chem. Soc. 2016, 138 (7), 2138–2141. https://doi.org/10.1021/jacs.5b13294.

(42)

Rocks, C.; Svrcek, V.; Maguire, P.; Mariotti, D. Understanding Surface Chemistry during

MAPbI3 Spray Deposition and Its Effect on Photovoltaic Performance. J. Mater. Chem. C

2017, 5 (4), 902–916. https://doi.org/10.1039/C6TC04864A.

(43)

Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H. Highly Efficient CH3NH3PbI3−xClx Mixed

Halide Perovskite Solar Cells Prepared by Re-Dissolution and Crystal Grain Growth via

Spray Coating. J. Mater. Chem. A 2016, 4 (45), 17636–17642.

https://doi.org/10.1039/C6TA06718B.

(44)

Liang, Z.; Zhang, S.; Xu, X.; Wang, N.; Wang, J.; Wang, X.; Bi, Z.; Xu, G.; Yuan, N.;

Ding, J. A Large Grain Size Perovskite Thin Film with a Dense Structure for Planar

Heterojunction Solar Cells via Spray Deposition under Ambient Conditions. RSC Adv.

2015, 5 (74), 60562–60569. https://doi.org/10.1039/C5RA09110A.

26

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

For Table of Contents Use Only

“Columnar Grain Growth of Lead-Free Double Perovskite using Mist Deposition Method for

Sensitive X-ray Detectors”

Yuki Haruta, Shinji Wada, Takumi Ikenoue, Masao Miyake, and Tetsuji Hirato

TOC GRAPHICS

Synopsis

Cs2AgBiBr6 films with columnar grain structures are fabricated via the mist deposition method. In

this method, the re-dissolution capability of the precursor solution is a key factor promoting the

grain growth on the film surface, leading to columnar growth. An X-ray detector based on the

Cs2AgBiBr6 thick films with columnar grains exhibits a high sensitivity of 487 μC Gyair−1 cm−2.

27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Supporting Information

Columnar Grain Growth of Lead-Free Double Perovskite

Using Mist Deposition Method for Sensitive X-ray Detectors

Yuki Haruta, Shinji Wada, Takumi Ikenoue*, Masao Miyake, and Tetsuji Hirato

Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan

*E-mail: ikenoue.takumi.4m@kyoto-u.ac.jp

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Experimental

Preparation of MAPbBr3 Films

To prepare the MAPbBr3 precursor solution, MABr (Sigma-Aldrich, 99%) and PbBr2

(Sigma-Aldrich, 98%) were dissolved in DMF, so that the MAPbBr3 concentration was 120 mM.

The MAPbBr3 films were deposited on glass substrates via the mist deposition method. The

fabrication conditions are shown in Table S1.

Table S1. Fabrication conditions for MAPbBr3

Solution concentration

120 mM MAPbBr3

Solvent

DMF

Substrate temperature

120 °C

Carrier gas

N2, 0.6 L min−1

Dilution gas

N2, 4.4 L min−1

Stage

1.00 mm s−1 × 30 cycles

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S1. (a) A photograph and (b) XRD pattern of the prepared Cs2AgBiBr6 powders. (c–e)

Saturation test by adding (c) 4 mL, (d) 5 mL, and (e) 6 mL DMSO-DMF solvent to 1.16 mmol

Cs2AgBiBr6 powders.

To investigate the saturation concentration of Cs2AgBiBr6 for the solvent mixture of DMSO

and DMF (1:1, v/v), we added the solvent to 1.16 mmol Cs2AgBiBr6 powders (Figure S1a, b). As

shown in Figures S1c and S1d, white precipitates remained even after 3 hours of stirring. The

white precipitates seemed to be CsBr. After adding a total solvent amount of 6 mL, complete

dissolution was confirmed (Figure S1e). Based on the above results, the saturation concentration

was identified to be 193–232 mM. These experiments were performed at 20±5 °C.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S2. EDX spectrum and the corresponding atomic ratio of the Cs2AgBiBr6 film.

Figure S3. Histogram of thicknesses measured at randomly selected points in the 1.9-μm-thick

Cs2AgBiBr6 film.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S4. (a) Schematic of the mist droplets reaching the substrate. (b) SEM images of the

precipitation formed from a mist droplet.

To observe the precipitation formed from a mist droplet, we focused on the edge on the

substrate, which is only reached by few mist droplets (Figure S4a), and found an isolated circular

precipitation (Figure S4b). The SEM observation revealed that the diameter was approximately 7

μm, and the grain size was less than 100 nm.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S5. Cross-sectional SEM images of the Cs2AgBiBr6 films prepared at the substrate

temperatures of (a) 130, (b) 160, (c) 170, and (d) 190 °C.

Figure S6. Surface SEM images of the Cs2AgBiBr6 films prepared at the substrate temperatures

of (a) 110, (b) 130, (c) 150, (d) 160, (e) 170, and (f) 190 °C.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S7. XRD patterns of the Cs2AgBiBr6 films prepared at 110–210 °C.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S8. Correlation between (100)-orientation/(111)-orientation and substrate temperature.

The crystal orientation of (hkl) plane was quantified using the orientation factor F(hkl) defined by

the following equation:

𝐹(ℎ𝑘𝑙) =

𝐼(ℎ𝑘𝑙)

⁄𝐼

(220) sample

𝐼(ℎ𝑘𝑙)

⁄𝐼

(220) reference

where I(hkl) is the intensity of the peak derived from the (hkl) plane.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S9. (a, b) surface and (c, d) cross-sectional SEM images of the Cs2AgBiBr6 film prepared

from the 2.5 mM solution. The other fabrication conditions are summarized in Table S2.

Table S2. Fabrication conditions for Cs2AgBiBr6 film

Substrate temperature

150 °C

Carrier gas

N2, 0.4 L min−1

Dilution gas

N2, 4.6 L min−1

Stage

0.16 mm s−1 × 200 cycles

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure S10. (a) Cross-sectional SEM image and (b) XRD pattern of the MAPbBr3 film and the

reference pattern of cubic MAPbBr31.

Reference

(1)

Jaffe, A.; Lin, Y.; Beavers, C. M.; Voss, J.; Mao, W. L.; Karunadasa, H. I. High-Pressure

Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on

Their Electronic and Optical Properties. ACS Cent. Sci. 2016, 2 (4), 201–209.

https://doi.org/10.1021/acscentsci.6b00055.

10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る