リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Diversity of biological rhythm and food web stability」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Diversity of biological rhythm and food web stability

舞木 昭彦 島根大学 DOI:10.1098/rsbl.2020.0673

2021.02.10

概要

How ecosystem biodiversity is maintained remains a persistent question in the field of ecology. Here, I present a new coexistence theory, i.e. diversity of biological rhythm. Circadian, circalunar and circannual rhythms, which control short- and long-term activities, are identified as universal phenomena in organisms. Analysis of a theoretical food web with diel, monthly and annual cycles in foraging activity for each organism shows that diverse biological cycles play key roles in maintaining complex communities. Each biological rhythm does not have a strong stabilizing effect independently but enhances community persistence when combined with other rhythms. Biological rhythms also mitigate inherent destabilization tendencies caused by food web complexity. Temporal weak interactions due to hybridity of multiple activity cycles play a key role toward coexistence. Polyrhythmic changes in biological activities in response to the Earth's rotation may be a key factor in maintaining biological communities.

この論文で使われている画像

参考文献

230

1.

231

Tilman, D., Kareiva, P. M. & others. Spatial Ecology: The Role of Space in Population Dynamics and

Interspecific Interactions. (Princeton University Press, 1997).

232

2.

Post, E. S. Time in Ecology. (Princeton University Press, 2019).

233

3.

Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the

234

235

Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

4.

236

237

Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science (80-. ). 297, 1292–1296

(2002).

5.

238

Fryxell, J. & Lundberg, P. Individual behavior and community dynamics. vol. 20 (Springer Science &

Business Media, 2012).

239

6.

Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).

240

7.

de Roos, A. M. & Persson, L. Population and community ecology of ontogenetic development.

241

(Princeton University Press, 2013).

242

8.

Schwartz, M. D. & others. Phenology: an integrative environmental science. (Springer, 2003).

243

9.

Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in

244

245

response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

10.

246

247

Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).

11.

248

249

250

Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick.

Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic

mismatch. Nature 430, 881–884 (2004).

12.

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change

on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

251

13.

252

253

of species interactions. Ecol. Lett. 13, 1–10 (2010).

14.

254

255

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature

576, 257–261 (2019).

27.

280

281

Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303

(2018).

278

279

Encinas-Viso, F., Revilla, T. A. & Etienne, R. S. Phenology drives mutualistic network structure and

diversity. Ecol. Lett. 15, 198–208 (2012).

276

277

McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food Web Structure in

Temporally-Forced Ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).

274

275

White, E. & Hastings, A. Seasonality in ecology: Progress and prospects in theory. 2–15 (2018)

doi:10.7287/peerj.preprints.27235v1.

272

273

Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366

(2000).

270

271

Godoy, O. & Levine, J. M. Phenology effects on invasion success: Insights from coupling field

experiments to coexistence theory. Ecology 95, 726–736 (2014).

268

269

Benincà, E., Ballantine, B., Ellner, S. P. & Huisman, J. Species fluctuations sustained by a cyclic

succession at the edge of chaos. Proc. Natl. Acad. Sci. U. S. A. 112, 6389–6394 (2015).

266

267

Taylor, R. A., Sherratt, J. A. & White, A. Seasonal forcing and multi-year cycles in interacting

populations: lessons from a predator--prey model. J. Math. Biol. 67, 1741–1764 (2013).

264

265

Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol.

Lett. 22, 1324–1338 (2019).

262

263

Nakazawa, T. & Doi, H. A perspective on match/mismatch of phenology in community contexts.

Oikos 121, 489–495 (2012).

260

261

Sakavara, A., Tsirtsis, G., Roelke, D. L., Mancy, R. & Spatharis, S. Lumpy species coexistence arises

robustly in fluctuating resource environments. Proc. Natl. Acad. Sci. U. S. A. 115, 738–743 (2018).

258

259

Namba, T. & Takahashi, S. Competitive coexistence in a seasonally fluctuating environment II.

Multiple stable states and invasion success. Theor. Popul. Biol. 44, 374–402 (1993).

256

257

Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing

Kronfeld-Schor, N. & Dayan, T. Partitioning of Time as an Ecological Resource. Annu. Rev. Ecol.

Evol. Syst. 34, 153–181 (2003).

28.

Welch, K. D. & Harwood, J. D. Temporal dynamics of natural enemy-pest interactions in a changing

282

283

environment. Biol. Control 75, 18–27 (2014).

29.

284

Raible, F., Takekata, H. & Tessmar-Raible, K. An overview of monthly rhythms and clocks. Front.

Neurol. 8, 1–14 (2017).

285

30.

Kronfeld-Schor, N. et al. Chronobiology by moonlight. Proc. R. Soc. B Biol. Sci. 280, (2013).

286

31.

Dunlap, J. C., Loros, J. J. & DeCoursey, P. J. Chronobiology: biological timekeeping. (Sinauer

287

288

Associates, 2004).

32.

289

290

community. Nature 554, 360–363 (2018).

33.

291

292

34.

35.

36.

37.

38.

39.

40.

41.

311

Wearmouth, V. J. et al. Scaling laws of ambush predator ‘waiting’ behaviour are tuned to a common

ecology. Proc. R. Soc. B Biol. Sci. 281, 20132997 (2014).

42.

309

310

Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S. & Sugihara, G. Global environmental drivers

of influenza. Proc. Natl. Acad. Sci. U. S. A. 113, 13081–13086 (2016).

307

308

Yerushalmi, S. & Green, R. M. Evidence for the adaptive significance of circadian rhythms. Ecol.

Lett. 12, 970–981 (2009).

305

306

Bradshaw, W. E. & Holzapfel, C. M. Genetic response to rapid climate change: It’s seasonal timing

that matters. Mol. Ecol. 17, 157–166 (2008).

303

304

Lovegrove, B. G. et al. Are tropical small mammals physiologically vulnerable to Arrhenius effects

and climate change? Physiol. Biochem. Zool. 87, 30–45 (2014).

301

302

Körtner, G. & Geiser, F. The temporal organization of daily torpor and hibernation: Circadian and

circannual rhythms. Chronobiol. Int. 17, 103–128 (2000).

299

300

Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light

pollution: A mechanistic appraisal. Biol. Rev. 88, 912–927 (2013).

297

298

Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276

(1994).

295

296

Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long

loops. Science (80-. ). 296, 1120–1123 (2002).

293

294

Ushio, M. et al. Fluctuating interaction network and time-varying stability of a natural fish

Chen, X. & Cohen, J. E. Transient dynamics and food--web complexity in the Lotka--Volterra

cascade model. Proc. R. Soc. London. Ser. B Biol. Sci. 268, 869–877 (2001).

43.

Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic

and trophic networks. Science (80-. ). 329, 853–856 (2010).

10

312

44.

313

314

315

Abrams, P. A. When does periodic variation in resource growth allow robust coexistence of

competing consumer species? Ecology 85, 372–382 (2004).

45.

Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability.

Science (80-. ). 299, 1388–1391 (2003).

316

317

318

Supplementary material

319

Figures S1–S8, Code for Figures

320

321

Ethics

322

Not applicable.

323

324

Data accessibility

325

No new data was used. The source code for figures has been included in supplementary

326

material.

327

328

Competing interests

329

The author declares no competing interests.

330

331

Funding

332

This work was supported by a Grant-in-Aid for Scientific Research (C) (grant numbers

333

#20K06826) from the Japan Society for the Promotion of Science.

334

335

Acknowledgments

336

This study was supported by a Grant-in-Aid for Scientific Research (C) (#20K06826) from

337

the Japan Society for the Promotion of Science. The author appreciates the support from the

338

Faculty of Life and Environmental Sciences at Shimane University for providing financial

11

339

aid to publish this article.

340

341

Author contributions

342

AM performed all research and wrote the manuscript.

343

344

345

346

347

348

Figure legends

349

Fig. 1. Effects of foraging activity cycles on stability. Each circle represents a different

350

model with or without an activity cycle. D, M, and Y represent diel, monthly, and annual

351

cycles, respectively. DM, DY, MY, and DMY represent combinations of the cycles. A

352

random model was assumed. N = 50 and C = 0.5. h ij = 5.

353

354

Fig. 2. Relationships between food web complexity and stability. (a) Effects of species

355

richness. C = 0.5. (b) Effects of connectance. N = 50. Red and blue represent cases with or

356

without activity cycles, respectively. h ij = 5.

357

358

359

360

12

...

参考文献をもっと見る