リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「放射性同位元素製造のためのC(d,n ) 反応からの中性子収量測定とその医療応用に向けたPHITSによるドシメトリ計算システムの開発」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

放射性同位元素製造のためのC(d,n ) 反応からの中性子収量測定とその医療応用に向けたPHITSによるドシメトリ計算システムの開発

パトワリ, エムディ, カウサー, アハメッド KAWCHAR, AHMED, PATWARY, MD 九州大学

2020.09.25

概要

In recent years, intensive accelerator-based neutrons sources with deuteron-induced reactions have been proposed for various applications, especially, production of medical radioisotopes (RIs). We focused on neutrons generated via the C(d,n) reactions, because they have advantages of neutron intensity and energy adjustability. Moreover, because high energy neutrons to be applied for RIs productions are strongly focused on forward emission angle, a simple irradiation system having a low quantity of shielding is possible in actual applications. To estimate the production amount and purity of produced RIs, accurate double-differential thick- target neutron yield (DDTTNY) is necessary. It is also required to design shielding of the irradiation system. For the RI productions, deuteron having a few to 50 MeV is used to generate the neutrons, but experimental DDTTNYs of the C(d,n) reaction in the range have not been measured systematically. Besides, the lack of experimental data leads to the uncertainty of the production amount and purity of produced RIs. For the RI production applications, neutron energy adjustment is promising to reduce byproducts’ contribution, thus the uncertainty is sometimes cause of difficulty of optimization of deuteron energy for the neutron energy adjustment.

In the accelerator-based RI production method, new RIs are proposing for medical use for diagnosis and therapy. To avoid from negative effects of normal organs and tissues during the diagnosis or therapy, accurate prediction of absorbed dose is very important. External radiation doses like X-ray, CT, or IMRT therapy can be precisely predicted by using conventional models or the latest Monte Carlo based method, and also the internal dose of inhalation and ingestion can be determined by using dose coefficients listed in ICRP Publication 119. In contrast to that, however, the precise dose calculation method of “administrated medical RIs” has not been established yet. Nowadays, the dose prediction is given by Monte Carlo calculations using the ICRP/ICRU recommended AM and AF phantoms which are based on the organ masses according to the ICRP Publication 89 having statistics for Western Europeans and North Americans. In other words, because the phantoms are different from Asian reference personals, we cannot obtain precise dose prediction by using these estimations. Also, there is no established prediction method of the radiation dose of the clinical staff and the patient’s family from the administrated patient. The dose can be measured by an expensive survey meter for the clinical staff, but after checking out of the hospital there is no way to measure the dose of the patient’s family.

To overcome the above situations, this thesis has two purposes: First, DDTTNYs of the C(d,n) reaction for 12, 20 and 30 MeV deuteron were measured, because around 25 MeV, available experimental data are lacked even though the energy is considered promising for some medical RIs production, such as 64Cu. Furthermore, the reproducibility of DEURACS was surveyed in the measured region to confirm the reliability of the code. Then, the DDTTNYs were used for estimation of RI production amount and purity of two applications, 132Cs for environmental tracer and 47Sc for medical use. Second, because some new RIs production is considered for the accelerator-based neutron method, a universal dose calculation system is proposed. In the calculation system, Monte Carlo simulation code, PHITS is used with realistic voxel phantom, JF-103, and JM-103, and the dose of an administrated patient is derived by using the latest ICRP recommendations. Furthermore, to establish a calculation method of clinical staff and patient’s family dose, γ-ray sources from administrated patients are recorded. The source can be used in Monte Carlo simulation code such as PHITS or GEANT4, to predict the dose of them.

This thesis introduces the background of the study and motivation of this work in the first chapter.

After that, Chapter 2 is devoted to experimental measurements of the thick-target neutron yield by using deuteron induced accelerator-based neutron source and the multiple-foil activation method. The experiments were conducted at the tandem accelerator facility of the Japan Atomic Energy Agency. Deuterons having 12, 20, or 30 MeV kinetic energy were separately incident on a thick target neutron converter made of natC (∅20 mm, 4 mmt). So that neutrons were generated via the (d,n) reactions. Multiple-foil made of natNi, natIn, 27Al, 59Co, and 93Nb were placed at 0⁰, 10⁰, 20⁰, 30⁰, and 45⁰ from the deuteron beam direction and were exposed to neutron irradiation for different time durations with different beam currents. Neutron spectra were unfolded for each incident deuteron energy and each neutron emission angle by using GRAVEL code. The results were compared with the theoretical calculations with DEURACS, and they showed that the DEURACS calculation reproduces the experimental DDTTNYs at 12, 20, and 30 MeV of deuteron energy from 0° to 45°of neutron emission angle. Results showed that DEURACS can be used to interpolate the lacking experimental DDTTNY. Moreover, a detailed comparison of yields to other available published data are also explained in this chapter. It is showed that this research can full fill the lack of nuclear data within the mentioned deuteron energy range.

In Chapter 3, the application of accelerator-based neutron to RIs production is discussed. This chapter is categorized into two parts. At first, an environmental tracer 132Cs (𝑇1/2 = 6.5 d) production experiment is described. This is produced by irradiating a 12-g of Cs2CO3 sample using accelerator-based neutrons by 1.2 µAof 30-MeV deuterons. The 132Cs production experiment was conducted at the Cyclotron and Radioisotopes Center (CYRIC) of Tohoku University, Japan. The 133Cs(n,2n)132Cs reaction, initiated by irradiating 30 MeV deuterons on a thick natC (∅40 mm, 4 mmt), yielded 102.2 kBq/g of 132Cs with a radioactive purity of 98% after 2-hour irradiation. Also, a feasibility study on andosol, haplic fluvisol, and gleyic fluvisol soil explains that 132Cs can be used as an alternative tracer of 137Cs (𝑇1/2 = 30y) for environmental radioactive monitoring. Moreover, the production yields and purities of an emergent theranostic medical RI, 47Sc is estimated by PHITS simulation by using measured DDTTNYs of 12, 20, and 30 MeV deuterons. When irradiating 5 g of 47Ti powder for 5 hours, 47Sc were produced via 47Ti(n,p) reaction and yielded a maximum 4.59 × 10-5 MBq/g/µC for neutron yields of 30 MeV deuterons. Based on the results from this proof-of-concept study, 47Sc has the potentiality to produce in a suitable quality for theranostic clinical applications.

PHITS-based internal dosimetry for organ/tissue absorbed dose estimation is reported in Chapter 4. An improved internal dosimetric calculation with the realistic Japanese reference voxel phantoms, JM-103 and JF-103 based on CT images of the real patients, have been implemented in PHITS. The novelty of our calculation system is applicability to any administrated RIs and any RIs using or to be used in the research field (e.g. tracer). The program uses the radionuclide decay database of ICRP Publication 107 and considers the ICRP recommended 83 different source regions irradiating 47 target tissues, defining the effective dose as presented in both of the ICRP Publications 60 and 103. This calculation system applies to all of the RIs. In this thesis, we calculated the dose for many RIs including 132Cs and 47Sc which is newly proposed. This is the case study of the adsorbed dose calculation with RIs having prospects.An extension of the developed dose calculation method is applied to estimate the sex-averaged effective dose based on the tissue weighting factors in ICRP 2007 recommendations; are presented for 47Sc with other frequently used medical RIs e.g., 18F, 99mTc, 90Y, etc. Dosimetric results were showed that our developed dosimetry calculations can be recommended for the Japanese averages and also for the Asian personal. Also, this chapter presents the dose coefficients for intravenous administration for several emergent medical RIs (e.g., 64,67Cu, 152,161Tb, 166Ho, etc.), and compared with data published in the ICRP Publication 53 and 128. From these aspects, the present results can play an important role as a guideline for patient-specific dosimetry.

Chapter 5 and Chapter 6 aredesignated for the PHITS-based external dosimetry with our developed computational framework. In Chapter 5, an operational quantity for the area or workplace monitoring called the ambientdose equivalent, H*(10), is expressed according to the latest ICRU definition. This is done by using the universal γ-ray source calculation. This procedure successfully applied to H*(10) estimation for a post-treated patient with 47Sc-, 64Cu-, 64Cu/67Cu-theranostics. The calculation results showed significance to the radiation safety issues especially for the clinical staff who works in the nuclear medicine department, and as well as the person who will take care of the patient after therapeutic or theranostic applications. The universal γ-ray source is one example of applications of our developed dose calculation system. If the calculation system is updated, we can calculate the universal γ-ray source with the same method using the updated one. Next, Chapter 6 set out the estimation of the absorbed dose coefficients for organs/tissues of a researcher for the occupational exposure from an external radiation source. This is also an application of our improved PHITS-based dosimetric calculation.As of practical experience, during dealing with radioactive 132Cs an occupational radiation workermayexpose to external radiation emitted by Cs radionuclides. This chapter explains the absorbed dose to all individual body parts of the researcher rather than an overall dose estimation with a personal dosimeter. Therefore, an occupational radiation worker can take necessary precautions to save the critical body parts by ensuring personal safety.

Finally, Chapter 7 summarized the present thesis work and pointed out the possible prospective future outlook.

この論文で使われている画像

参考文献

[1] C. Woodford and P. Ashby, “Non-Destructive Testing and Radiation in Industry On behalf of the Australian Institute for Non-Destructive Testing.”

[2] B. Singh, J. Singh, and A. Kaur, “Applications of Radioisotopes in Agriculture,” Int. J. Biotechnol. Bioeng. Res., vol. 4, no. 3, pp. 167–174, 2013, [Online]. Available: http://www.ripublication.com/ ijbbr.htm.

[3] M. F. Patterson, “Food irradiation and food safety,” Rev. Med. Microbiol., vol. 4, no. 3, pp. 151–158, Jul. 1993, doi: 10.1097/00013542-199307000-00005.

[4] G. Stöcklin, S. M. Qaim, and F. Rösch, “The Impact of Radioactivity on Medicine Metallic,” Radiochim. Acta, vol. 70–71, no. s1, Jan. 1995, doi: 10.1524/ract.1995.7071.special-issue.249.

[5] J. Krige, “Atoms for Peace, Scientific Internationalism, and Scientific Intelligence,” Osiris, vol. 21, no. 1, pp. 161–181, Jan. 2006, doi: 10.1086/507140.

[6] “JEMIMA Japan Electric Measuring Instruments Manufacturers’ Association.” https://www.jemima.or.jp/en/index.html (accessed Jun. 06, 2020).

[7] IAEA, “Irradiation of bulbs and tuber crops,” IAEA-TECDOC-937, IAEA, Vienna, Austria, p. 101, 1997.

[8] S. Banerjee, M. R. Ambikalmajan Pillai, and N. Ramamoorthy, “Evolution of Tc-99m in diagnostic radiopharmaceuticals,” Semin. Nucl. Med., vol. 31, no. 4, pp. 260–277, Oct. 2001, doi: 10.1053/snuc.2001.26205.

[9] A. Wyszomirska, “Iodine-131 for therapy of thyroid diseases. Physical and biological basis,” Nuclear Medicine Review, vol. 15, no. 2. pp. 120–123, 2012.

[10] J. J. P. De Lima, “Radioisotopes in medicine,” Eur. J. Phys., vol. 19, no. 6, pp. 485–497, 1998, doi: 10.1088/0143-0807/19/6/003.

[11] D. Nayak and S. Lahiri, “Application of radioisotopes in the field of nuclear medicine,” J. Radioanal. Nucl. Chem., vol. 242, no. 2, pp. 423–432, Nov. 1999, doi: 10.1007/BF02345573.

[12] “Enrico Fermi - Nobel Lecture: Artificial Radioactivity Produced by Neutron Bombardment.” https://www.nobelprize.org/prizes/physics/1938/fermi/lecture/ (accessed Jun. 06, 2020).

[13] Y. Nagai et al., “Generation of Radioisotopes with Accelerator Neutrons by Deuterons,” J. Phys. Soc. Japan, vol. 82, no. 6, p. 064201, Jun. 2013, doi: 10.7566/JPSJ.82.064201.

[14] E. Musacchio González and G. Martín Hernández, “An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 865, pp. 148–151, Sep. 2017, doi: 10.1016/j.nima.2016.11.059.

[15] G. Yue, J. Chen, and R. Song, “Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target,” Med. Phys., vol. 24, no. 6, pp. 851–855, Jun. 1997, doi: 10.1118/1.597984.

[16] S. Kawase et al., “Study of proton- and deuteron-induced spallation reactions on the long-lived fission product 93Zr at 105 MeV/nucleon in inverse kinematics,” Prog. Theor. Exp. Phys., vol. 2017, no. 9, Sep. 2017, doi: 10.1093/ptep/ptx110.

[17] J. Hartman and A. Barzilov, “DD and DT neutron generator yield measurements using EJ-299-33A detector,” in 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015, Oct. 2016, pp. 1–4, doi: 10.1109/NSSMIC.2015.7581918.

[18] T. Kin, T. Kawagoe, S. Araki, and Y. Watanabe, “Production of high-purity medical radio isotope 64Cu with accelerator-based neutrons generated with 9 and 12 MeV deuterons,” J. Nucl. Sci. Technol., vol. 54, no. 10, pp. 1123– 1130, Oct. 2017, doi: 10.1080/00223131.2017.1344585.

[19] T. Kin et al., “New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons,” J. Phys. Soc. Japan, vol. 82, no. 3, p. 034201, Mar. 2013, doi: 10.7566/JPSJ.82.034201.

[20] T. Kin et al., “Development of Radioisotopes Production Method by Accelerator-Based Neutron: Activity at Kyushu University,” in Proceedings of the Second International Symposium on Radiation Detectors and Their Uses (ISRD2018), Jan. 2019, doi: 10.7566/jpscp.24.011031.

[21] T. Kin, Y. Sanzen, M. Kamida, Y. Watanabe, and M. Itoh, “Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source,” EPJ Web Conf., vol. 146, p. 08009, Sep. 2017, doi: 10.1051/epjconf/201714608009.

[22] F. Minato and Y. Nagai, “Estimation of production yield of 99Mo for medical use using neutrons from natC(d,n) at Ed = 40MeV,” J. Phys. Soc. Japan, vol. 79, no. 9, p. 093201, Sep. 2010, doi: 10.1143/JPSJ.79.093201.

[23] Y. Nagai, “Medical isotope production using accelerator neutrons,” in 11th International Topical Meeting on Nuclear Applications of Accelerators, AccApp 2013, 2013, pp. 47–49.

[24] Y. Nagai and Y. Hatsukawa, “Production of 99Mo for Nuclear Medicine by 100Mo(n,2n)99Mo,” J. Phys. Soc. Japan, vol. 78, no. 3, p. 033201, Mar. 2009, doi: 10.1143/JPSJ.78.033201.

[25] Y. Nagai et al., “Production of an Isomeric State of 90Y by Fast Neutrons for Nuclear Diagnostics,” J. Phys. Soc. Japan, vol. 78, no. 11, p. 113201, Nov. 2009, doi: 10.1143/jpsj.78.113201.

[26] Y. Nagai, H. Makii, S. Namiki, O. Iwamoto, N. Iwamoto, and H. Sawahata, “Radioactive tracer 132Cs (TRACs) for Fukushima nuclear power plant accident,” J. Phys. Soc. Japan, vol. 81, no. 8, p. 085003, Aug. 2012, doi: 10.1143/JPSJ.81.085003.

[27] M. J. Saltmarsh, C. A. Ludemann, C. B. Fulmer, and R. C. Styles, “Characteristics of an intense neutron source based on the d+Be reaction,” Nucl. Instruments Methods, vol. 145, no. 1, pp. 81–90, Aug. 1977, doi: 10.1016/0029-554X(77)90559-6.

[28] Y. Uwamino, T. oru Ohkubo, A. Torii, and T. Nakamura, “Semi- monoenergetic neutron field for activation experiments up to 40 MeV,” Nucl. Inst. Methods Phys. Res. A, vol. 271, no. 3, pp. 546–552, Sep. 1988, doi: 10.1016/0168-9002(88)90318-X.

[29] EXFOR, “Experimental nuclear reaction data file,” Energy Sci. Technol. Dept., BNL, 2011, Accessed: Jun. 06, 2020. [Online]. Available: https://www-nds.iaea.org/exfor/.

[30] S. Araki, “Study on secondary neutron and gamma-ray production from deuteron-induced nuclear reactions (Japanese),” Kyushu University, 2017.

[31] J. P. Meulders, P. Leleux, P. C. Macq, and C. Pirart, “Fast neutron yields and spectra from targets of varying atomic number bombarded with deuterons from 16 to 50 MeV.,” Phys. Med. Biol., vol. 20, no. 2, pp. 235–43, Mar. 1975, doi: 10.1088/0031-9155/20/2/005.

[32] T. Sato et al., “Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02,” J. Nucl. Sci. Technol., vol. 55, no. 6, pp. 684–690, Jun. 2018, doi: 10.1080/00223131.2017.1419890.

[33] T. Goorley et al., “Features of MCNP6,” Ann. Nucl. Energy, vol. 87, pp. 772–783, Jan. 2016, doi: 10.1016/j.anucene.2015.02.020.

[34] S. Agostinelli et al., “GEANT4 - A simulation toolkit,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 506, no. 3, pp. 250–303, Jul. 2003, doi: 10.1016/S0168-9002(03)01368-8.

[35] S. Nakayama, H. Kouno, Y. Watanabe, O. Iwamoto, and K. Ogata, “Theoretical model analysis of (d,xn) reactions on 9Be and 12C at incident energies up to 50 MeV,” Phys. Rev. C, vol. 94, no. 1, p. 014618, Jul. 2016, doi: 10.1103/PhysRevC.94.014618.

[36] Glenn G. Knoll, Radiation Detection and Measurement (4th Edition), vol., no. John Wiley and Sons, Inc., 2010.

[37] M. Matzke, “Unfolding of Pulse Height Spectra: The HEPRO Program,” Phys. Tech. Bundesanstalt, vol. 19, 1994.

[38] M. Reginatto, “The ‘Multi-Channel’ Unfolding Programs in the UMG Package: MXD_MC33, GRV_MC33 and IQU_MC33,” Braunschweig, Germany, 2004. [Online]. Available: http://www.tokai.rist.or.jp/rsicc/app/umg3.3.htm.

[39] T. Adye, “Unfolding algorithms and tests using RooUnfold,” in Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, May 2011, pp. 313–318, [Online]. Available: http://arxiv.org/abs/1105.1160.

[40] T. Kin, Y. Sanzen, M. Kamida, K. Aoki, N. Araki, and Y. Watanabe, “Artificial Neural Network for Unfolding Accelerator-based Neutron Spectrum by Means of Multiple-foil Activation Method,” in 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Oct. 2017, pp. 1–2, doi: 10.1109/NSSMIC.2017.8532892.

[41] ICRP, 1996. “Conversion Coefficients for use in Radiological Protection against External Radiation,” ICRP Publication 74. Ann. ICRP 26 (3-4).

[42] ICRP, 1975. “Report of the Task Group on Reference Man," ICRP Publication 23 Pergamon Press, Oxford.

[43] ICRP, 2002. “Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values,” ICRP Publication 89. Ann. ICRP 32 (3-4).

[44] ICRP, 2009. “Adult Reference Computational Phantoms,” ICRP Publication 110. Ann. ICRP 39 (2).

[45] M. Zankl and A. Wittmann, “The adult male voxel model ”Golem" segmented from whole-body CT patient data,” Radiat. Environ. Biophys., vol. 40, no. 2, pp. 153–162, Jun. 2001, doi: 10.1007/s004110100094.

[46] ICRP, 2007. “The 2007 Recommendations of the International Commission on Radiological Protection,” ICRP Publication 103. Ann. ICRP 37 (2-4).

[47] K. Sato and F. Takahashi, “The contemporary JAEA Japanese voxel phantoms,” Radiat. Prot. Dosimetry, vol. 149, no. 1, pp. 43–48, Mar. 2012, doi: 10.1093/rpd/ncr405.

[48] G. Tanaka, H. Kawamura, R. V. Griffith, M. Cristy, and K. F. Eckerman, “Reference Man Models for Males and Females of Six Age Groups of Asian Populations,” Radiat. Prot. Dosimetry, vol. 79, no. 1, pp. 383–386, Oct. 1998, doi: 10.1093/oxfordjournals.rpd.a032432.

[49] J. Knaster et al., “Overview of the IFMIF/EVEDA project,” Nucl. Fusion, vol. 57, no. 10, p. 102016, Oct. 2017, doi: 10.1088/1741-4326/aa6a6a.

[50] M. Fadil and B. Rannou, “About the production rates and the activation of the uranium carbide target for SPIRAL 2,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 266, no. 19–20, pp. 4318–4321, Oct. 2008, doi: 10.1016/j.nimb.2008.05.138.

[51] N. Colonna et al., “Measurements of low-energy (d,n) reactions for BNCT,” Med. Phys., vol. 26, no. 5, pp. 793–798, 1999, doi: 10.1118/1.598599.

[52] H. Tanaka et al., “Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 267, no. 11, pp. 1970–1977, Jun. 2009, doi: 10.1016/j.nimb.2009.03.095.

[53] “Research reactors and Accelerators / Japan Atomic Energy Agency / Nuclear Science Research Institute.” https://www.jaea.go.jp/english/04/ntokai/kasokuki/kasokuki_04.html (accessed Jun. 06, 2020).

[54] “Ignite the Future of High-Tech R&D | The Nilaco Corporation.” https://nilaco.jp/en/ (accessed Jun. 06, 2020).

[55] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 11–12, pp. 1818–1823, Jun. 2010, doi: 10.1016/j.nimb.2010.02.091.

[56] “Nudat 2.” 2018, Accessed: Jun. 06, 2020. [Online]. Available: https://www.nndc.bnl.gov/nudat2/.

[57] G. R. Gilmore, Practical Gamma-Ray Spectrometry. Chichester, UK: John Wiley & Sons, Ltd, 2008.

[58] J.-C. Sublet, “The European Activation File: EAF-2010 neutron-induced cross-section library,” Oxfordshire, OX14 3DB, United Kingdom, 2010. [Online]. Available: https://tendl.web.psi.ch/bib_rochman/EAF2010.pdf.

[59] A. Sonzogni and B. Pritychenko, “Q-value Calculator (QCalc),” NNDC, Brookhaven National Laboratory, 2003. https://www.nndc.bnl.gov/qcalc/ (accessed Jun. 06, 2020).

[60] V. Suman and P. K. Sarkar, “Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 737, pp. 76–86, Feb. 2014, doi: 10.1016/j.nima.2013.11.012.

[61] K. A. Weaver, J. D. Anderson, H. H. Barschall, and J. C. Davis, “Neutron Spectra from Deuteron Bombardment of D, Li, Be, and C,” Nucl. Sci. Eng., vol. 52, no. 1, pp. 35–45, Sep. 1973, doi: 10.13182/NSE73-A23287.

[62] K. Shin, K. Hibi, M. Fujii, Y. Uwamino, and T. Nakamura, “Neutron and photon production from thick targets bombarded by 30-MeV p, 33-MeV d, 65-MeV He3, and 65-MeV ions: Experiment and comparison with cascade Monte Carlo calculations,” Phys. Rev. C, vol. 29, no. 4, pp. 1307–1316, 1984, doi: 10.1103/PhysRevC.29.1307.

[63] Y. Tajiri, Y. Watanabe, N. Shigyo, K. Hirabayashi, T. Nishizawa, and K. Sagara, “Measurement of double differential neutron yields from thick carbon target irradiated by 5-MeV and 9-MeV deuterons,” Prog. Nucl. Sci. Technol., vol. 4, pp. 582–586, 2014, doi: 10.15669/pnst.4.582.

[64] G. Lhersonneau et al., “Neutron yield from carbon, light- and heavy-water thick targets irradiated by 40MeV deuterons,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 603, no. 3, pp. 228–235, May 2009, doi: 10.1016/j.nima.2009.02.035.

[65] V. N. Kononov, M. V. Bokhovko, O. E. Kononov, N. A. Soloviev, W. T. Chu, and D. Nigg, “Accelerator-based fast neutron sources for neutron therapy,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 564, no. 1, pp. 525–531, Aug. 2006, doi: 10.1016/j.nima.2006.03.043.

[66] M. Hagiwara et al., “Experimental studies on the neutron emission spectrum and activation cross-section for 40 MeV deuterons in IFMIF accelerator structural elements,” J. Nucl. Mater., vol. 329–333, pp. 218–222, Aug. 2004, doi: 10.1016/j.jnucmat.2004.04.026.

[67] Z. Radivojevic et al., “Neutron yields from thick 12C and 9Be targets irradiated by 50 and 65 MeV deuterons,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 183, no. 3–4, pp. 212– 220, Oct. 2001, doi: 10.1016/S0168-583X(01)00729-7.

[68] G. W. Schweimer, “Fast neutron production with 54 MeV deuterons,” Nucl. Phys. A, vol. 100, no. 3, pp. 537–544, Aug. 1967, doi: 10.1016/0375-9474(67)90122-4.

[69] G. Lhersonneau et al., “Neutron yield of thick 12C and 13C targets with 20 and 30 MeV deuterons,” Eur. Phys. J. A, vol. 52, no. 12, p. 364, Dec. 2016, doi: 10.1140/epja/i2016-16364-x.

[70] G. Lhersonneau, T. Malkiewicz, P. Jones, S. Ketelhut, and W. H. Trzaska, “Neutron production by stopping 55 MeV deuterons in carbon and heavy water,” Eur. Phys. J. A, vol. 48, no. 9, p. 116, Sep. 2012, doi: 10.1140/epja/i2012-12116-4.

[71] S. Ménard et al., “Fast neutron forward distributions from C, Be, and U thick targets bombarded by deuterons,” Phys. Rev. Spec. Top. - Accel. Beams, vol. 2, no. 3, p. 033501, Mar. 1999, doi: 10.1103/PhysRevSTAB.2.033501.

[72] N. Pauwels, F. Clapier, P. Gara, M. Mirea, and J. Proust, “Experimental determination of neutron spectra produced by bombarding thick targets: Deuterons (100 MeV/u) on 9Be, deuterons (100 MeV/u) on 238U and 36Ar (95 MeV/u) on 12C,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 160, no. 3, pp. 315–327, Mar. 2000, doi: 10.1016/S0168-583X(99)00605-9.

[73] T. J. Yasunari, A. Stohl, R. S. Hayano, J. F. Burkhart, S. Eckhardt, and T. Yasunari, “Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident,” Proc. Natl. Acad. Sci., vol. 108, no. 49, pp. 19530–19534, Dec. 2011, doi: 10.1073/pnas.1112058108.

[74] K. Adachi, M. Kajino, Y. Zaizen, and Y. Igarashi, “Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident,” Sci. Rep., vol. 3, no. 1, p. 2554, Dec. 2013, doi: 10.1038/srep02554.

[75] Y. Onda, H. Kato, M. Hoshi, Y. Takahashi, and M.-L. Nguyen, “Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident,” J. Environ. Radioact., vol. 139, pp. 300–307, Jan. 2015, doi: 10.1016/j.jenvrad.2014.06.002.

[76] H. Kato, Y. Onda, and T. Gomi, “Interception of the Fukushima reactor accident‐derived 137Cs, 134Cs and 131I by coniferous forest canopies,” Geophys. Res. Lett., vol. 39, no. 20, p. 2012GL052928, Oct. 2012, doi: 10.1029/2012GL052928.

[77] H. Kato, Y. Onda, and M. Teramage, “Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident,” J. Environ. Radioact., vol. 111, pp. 59–64, Sep. 2012, doi: 10.1016/j.jenvrad.2011.10.003.

[78] S. Hashimoto, T. Matsuura, K. Nanko, I. Linkov, G. Shaw, and S. Kaneko, “Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident,” Sci. Rep., vol. 3, no. 1, p. 2564, Dec. 2013, doi: 10.1038/srep02564.

[79] A. Konoplev et al., “Behavior of accidentally released radiocesium in soil– water environment: Looking at Fukushima from a Chernobyl perspective,” J. Environ. Radioact., vol. 151, pp. 568–578, Jan. 2016, doi: 10.1016/j.jenvrad.2015.06.019.

[80] E. Browne and J. K. Tuli, “Nuclear Data Sheets for A = 137,” Nucl. Data Sheets, vol. 108, no. 10, pp. 2173–2318, Oct. 2007, doi: 10.1016/j.nds.2007.09.002.

[81] T. Iinuma, T. Nagai, T. Ishihara, K. Watari, and M. Izawa, “Cesium Turnover in Man following Single Administration of 132CS 1. Whole Body Retention and Excretion Pattern,” J. Radiat. Res., vol. 6, no. 2, pp. 73–81, 1965, doi: 10.1269/jrr.6.73.

[82] J. S. McKee et al., “Dynamic studies of positron-emitting putative tumor marker 132Cs in mice show differential tumor and regional uptake.,” Cancer Detect. Prev., vol. 8, no. 1–2, pp. 87–93, 1985.

[83] “Cyclotron and Radioisotope Center ( CYRIC ).” http://www.cyric.tohoku.ac.jp/english/index.html (accessed Jun. 06, 2020).

[84] T. Wakui, M. Itoh, K. Shimada, H. P. Yoshida, T. Shinozuka, and Y. Sakemi, “Restoration of Accelerator Facilities Damaged by Great East Japan Earthquake at Cyclotron and Radioisotope Center, Tohoku University,” Tohoku J. Exp. Med., vol. 233, no. 4, pp. 221–231, 2014, doi: 10.1620/tjem.233.221.

[85] A. V. Konoplev et al., “Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi nuclear power plant accident,” Eurasian Soil Sci., vol. 49, no. 5, pp. 570–580, May 2016, doi: 10.1134/S1064229316050082.

[86] S. Otosaka, T. Nakanishi, T. Suzuki, Y. Satoh, and H. Narita, “Vertical and Lateral Transport of Particulate Radiocesium off Fukushima,” Environ. Sci. Technol., vol. 48, no. 21, pp. 12595–12602, Nov. 2014, doi: 10.1021/es503736d.

[87] M. T. Teramage, Y. Onda, J. Patin, H. Kato, T. Gomi, and S. Nam, “Vertical distribution of radiocesium in coniferous forest soil after the Fukushima nuclear power plant accident,” J. Environ. Radioact., vol. 137, pp. 37–45, Nov. 2014, doi: 10.1016/j.jenvrad.2014.06.017.

[88] K. Fujii, S. Ikeda, A. Akama, M. Komatsu, M. Takahashi, and S. Kaneko, “Vertical migration of radiocesium and clay mineral composition in five forest soils contaminated by the Fukushima nuclear accident,” Soil Sci. Plant Nutr., vol. 60, no. 6, pp. 751–764, Nov. 2014, doi: 10.1080/00380768.2014.926781.

[89] J. Koarashi, M. Atarashi-Andoh, T. Matsunaga, T. Sato, S. Nagao, and H. Nagai, “Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions,” Sci. Total Environ., vol. 431, pp. 392–401, Aug. 2012, doi: 10.1016/j.scitotenv.2012.05.041.

[90] T. Ohno et al., “Depth profiles of radioactive cesium and iodine released from the Fukushima Daiichi nuclear power plant in different agricultural fields and forests,” Geochem. J., vol. 46, no. 4, pp. 287–295, 2012, doi: 10.2343/geochemj.2.0204.

[91] K. Tanaka et al., “Vertical profiles of Iodine-131 and Cesium-137 in soils in Fukushima Prefecture related to the Fukushima Daiichi Nuclear Power Station Accident,” Geochem. J., vol. 46, no. 1, pp. 73–76, 2012, doi: 10.2343/geochemj.1.0137.

[92] K. Rosén, I. Öborn, and H. Lönsjö, “Migration of radiocaesium in Swedish soil profiles after the Chernobyl accident, 1987–1995,” J. Environ. Radioact., vol. 46, no. 1, pp. 45–66, Oct. 1999, doi: 10.1016/S0265-931X(99)00040-5.

[93] Md Kawchar Ahmed Patwary et al., “Feasibility Study of Radioisotope 132Cs Production Using Accelerator-Based Neutrons,” Evergreen, vol. 6, no. 4, pp. 280–284, Dec. 2019, doi: 10.5109/2547352.

[94] K. Hashimoto and Y. Nagai, “Radionuclide Production,” in Comprehensive Biomedical Physics, vol. 8, Elsevier, 2014, pp. 219–227.

[95] S. M. Qaim, “Nuclear data for medical radionuclides,” J. Radioanal. Nucl. Chem., vol. 305, no. 1, pp. 233–245, Jul. 2015, doi: 10.1007/s10967-014-3923-2.

[96] K. A. Domnanich et al., “47Sc as useful β–-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes,” EJNMMI Radiopharm. Chem., vol. 2, no. 1, p. 5, Dec. 2017, doi: 10.1186/s41181-017- 0024-x.

[97] C. Müller, K. A. Domnanich, C. A. Umbricht, and N. P. van der Meulen, “Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application,” Br. J. Radiol., vol. 91, no. 1091, p. 20180074, Nov. 2018, doi: 10.1259/bjr.20180074.

[98] B. Bartoś, A. Majkowska, S. Krajewski, and A. Bilewicz, “New separation method of no-carrier-added 47Sc from titanium targets,” Radiochim. Acta, vol. 100, no. 7, pp. 457–462, Jul. 2012, doi: 10.1524/ract.2012.1938.

[99] C. Muller et al., “Promising Prospects for 44Sc-/47Sc-Based Theragnostics: Application of 47Sc for Radionuclide Tumor Therapy in Mice,” J. Nucl. Med., vol. 55, no. 10, pp. 1658–1664, Oct. 2014, doi: 10.2967/jnumed.114.141614.

[100] C. Loveless, T. Carzaniga, J. Blanco, et al., "Evaluation of cyclotron produced 43,44,47Sc from titanium(0) and titanium oxide," J. Label. Compd. Radiopharm., vol. 62, pp. S123–S588, May 2019, doi: 10.1002/jlcr.3725.

[101] S. C. Srivastava, “Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory,” Radiochim. Acta, vol. 99, no. 10, pp. 635–640, Oct. 2011, doi: 10.1524/ract.2011.1882.

[102] M. Yagi and K. Kondo, “Preparation of carrier-free 47Sc by the 48Ti(γ,p) reaction,” Int. J. Appl. Radiat. Isot., vol. 28, no. 5, pp. 463–468, May 1977, doi: 10.1016/0020-708X(77)90178-8.

[103] M. Mamtimin, F. Harmon, and V. N. Starovoitova, “Sc-47 production from titanium targets using electron linacs,” Appl. Radiat. Isot., vol. 102, pp. 1–4, Aug. 2015, doi: 10.1016/j.apradiso.2015.04.012.

[104] S. Rane, J. T. Harris, and V. N. Starovoitova, “47Ca production for 47Ca/47Sc generator system using electron linacs,” Appl. Radiat. Isot., vol. 97, pp. 188– 192, Mar. 2015, doi: 10.1016/j.apradiso.2014.12.020.

[105] V. N. Starovoitova, P. L. Cole, and T. L. Grimm, “Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc,” J. Radioanal. Nucl. Chem., vol. 305, no. 1, pp. 127–132, Jul. 2015, doi: 10.1007/s10967- 015-4039-z.

[106] C. S. Loveless, L. L. Radford, S. J. Ferran, S. L. Queern, M. R. Shepherd, and S. E. Lapi, “Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47Sc,” EJNMMI Res., vol. 9, no. 1, p. 42, Dec. 2019, doi: 10.1186/s13550-019-0515-8.

[107] S. M. Qaim, “Nuclear data for production and medical application of radionuclides: Present status and future needs,” Nucl. Med. Biol., vol. 44, pp. 31–49, Jan. 2017, doi: 10.1016/j.nucmedbio.2016.08.016.

[108] T. Shimizu, H. Sakane, M. Shibata, K. Kawade, and T. Nishitani, “Measurements of activation cross sections of (n,p) and (n,α) reactions with d-D neutrons in the energy range of 2.1–3.1 MeV,” Ann. Nucl. Energy, vol. 31, no. 9, pp. 975–990, Jun. 2004, doi: 10.1016/j.anucene.2003.12.005.

[109] Y. Ikeda et al., “Activation Cross Section Measurement at Neutron Energies of 9.5, 11.0, 12.0 and 13.2 MeV Using 1H(11B,n)11C Neutron Source at JAERI,” 1992, pp. 294–296.

[110] S. M. Qaim, N. I. Molla, R. Wölfle, and G. Stöcklin, “Differential and Integral Cross Section Measurements of some (n, charged particle) Reactions on Titanium,” 1992, pp. 297–300.

[111] M. Viennot, M. Berrada, G. Paic, and S. Joly, “Cross-Section Measurements of (n,p) and (n,np + pn + d) Reactions for Some Titanium, Chromium, Iron, Cobalt, Nickel, and Zinc Isotopes around 14 MeV,” Nucl. Sci. Eng., vol. 108, no. 3, pp. 289–301, Jul. 1991, doi: 10.13182/NSE87-157.

[112] J. W. M. W. Mannhart, D.L. Smith, “Measurement of the Ti-47(n,p)Sc-47 reaction cross section (NEANDC-259-U),” Nucl. Energy Agency OECD, 1990, [Online]. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:21092355.

[113] W. V. Hecker, J. R. Williams, W. L. Alford, and S. K. Ghorai, “Partial neutron cross sections for 47Ti and 48Ti between 14.3 and 19.1 MeV,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 40–41, pp. 478–480, Apr. 1989, doi: 10.1016/0168-583X(89)91025-2.

[114] H. L. Pai, “The (n,p) Cross sections of Titanium Isotopes for Neutron Energies between 13.6 MeV and 19.5 MeV,” Can. J. Phys., vol. 44, no. 10, pp. 2337–2352, Oct. 1966, doi: 10.1139/p66-191.

[115] K. L. Kolsky, V. Joshi, L. F. Mausner, and S. C. Srivastava, “Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy,” Appl. Radiat. Isot., vol. 49, no. 12, pp. 1541–1549, Dec. 1998, doi: 10.1016/S0969-8043(98)00016-5.

[116] A. Boiardi et al., “Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma,” J. Neurooncol., vol. 72, no. 2, pp. 125–131, Apr. 2005, doi: 10.1007/s11060-004-1497-5.

[117] M. Luster et al., “Guidelines for radioiodine therapy of differentiated thyroid cancer,” Eur. J. Nucl. Med. Mol. Imaging, vol. 35, no. 10, pp. 1941–1959, Oct. 2008, doi: 10.1007/s00259-008-0883-1.

[118] J. S. Kim, “Combination Radioimmunotherapy Approaches and Quantification of Immuno-PET,” Nucl. Med. Mol. Imaging (2010)., vol. 50, no. 2, pp. 104–111, Jun. 2016, doi: 10.1007/s13139-015-0392-7.

[119] F. Kraeber-Bodere, J. Barbet, and J.-F. Chatal, “Radioimmunotherapy: From Current Clinical Success to Future Industrial Breakthrough?,” J. Nucl. Med., vol. 57, no. 3, pp. 329–331, Mar. 2016, doi: 10.2967/jnumed.115.167247.

[120] S. M. Larson, J. A. Carrasquillo, N.-K. V. Cheung, and O. W. Press, “Radioimmunotherapy of human tumours,” Nat. Rev. Cancer, vol. 15, no. 6, pp. 347–360, Jun. 2015, doi: 10.1038/nrc3925.

[121] S. H. L. Frost et al., “Comparison of 211At-PRIT and 211At-RIT of Ovarian Microtumors in a Nude Mouse Model,” Cancer Biother. Radiopharm., vol. 28, no. 2, pp. 108–114, Mar. 2013, doi: 10.1089/cbr.2012.1281.

[122] J. Zaheer, H. Kim, Y.-J. Lee, J. S. Kim, and S. M. Lim, “Combination Radioimmunotherapy Strategies for Solid Tumors,” Int. J. Mol. Sci., vol. 20, no. 22, p. 5579, Nov. 2019, doi: 10.3390/ijms20225579.

[123] A. Yordanova et al., “Theranostics in nuclear medicine practice,” Onco. Targets. Ther., vol. Volume 10, pp. 4821–4828, Oct. 2017, doi: 10.2147/OTT.S140671.

[124] S. S. Kelkar and T. M. Reineke, “Theranostics: Combining Imaging and Therapy,” Bioconjug. Chem., vol. 22, no. 10, pp. 1879–1903, Oct. 2011, doi: 10.1021/bc200151q.

[125] M. Pacilio et al., “Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride,” Eur. J. Nucl. Med. Mol. Imaging, vol. 43, no. 1, pp. 21–33, Jan. 2016, doi: 10.1007/s00259-015-3150-2.

[126] L. Mango, “Theranostics: A Unique Concept to Nuclear Medicine,” Arch. Cancer Sci. Ther., vol. 1, no. 1, pp. 001–004, Feb. 2017, doi: 10.29328/journal.hjcsr.1001001.

[127] ICRP, 2008. “Nuclear Decay Data for Dosimetric Calculations,” ICRP Publication 107. Ann. ICRP 38 (3).

[128] ICRP, 2006. “Human Alimentary Tract Model for Radiological Protection,” ICRP Publication 100. Ann. ICRP 36 (1-2).

[129] ICRP, 2016. “The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions,” ICRP Publication 133. Ann. ICRP 45(2), 1–74.

[130] A.S. Mollah, M.R. Quddus, and S.M. Iqubal “Internal radiation dose assessment in nuclear medicine practices by using locally developed IRDE software,” Bangladesh J. Nucl. Med., vol. 21, no. 1, pp. 26–30, 2018.

[131] S. Lamart, L. de Carlan, E. Blanchardon, and D. Franck, “Automatic application of ICRP biokinetic models in voxel phantoms for in vivo counting and internal dose assessment,” Radiat. Prot. Dosimetry, vol. 127, no. 1–4, pp. 240–244, Jun. 2007, doi: 10.1093/rpd/ncm345.

[132] C. L. D. Villoing, “NCINM: a computational phantom-based dosimetry tool for patients undergoing nuclear medicine procedures,” J. Nucl. Med., vol. 60, no. 1, p. 1634, 2019, [Online]. Available: http://jnm.snmjournals.org/content/60/supplement_1/1634.

[133] N. S. Jarvis and A. Birchall, “LUDEP 1.0, A Personal Computer Program to Implement the New ICRP Respiratory Tract Model,” Radiat. Prot. Dosimetry, vol. 53, no. 1–4, pp. 191–193, May 1994, doi: 10.1093/oxfordjournals.rpd.a082274.

[134] M. G. Stabin, R. B. Sparks, and E. Crowe, “OLINDA/EXM: the second- generation personal computer software for internal dose assessment in nuclear medicine.,” J. Nucl. Med., vol. 46, no. 6, pp. 1023–7, Jun. 2005, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15937315.

[135] M. Andersson, L. Johansson, D. Minarik, S. Mattsson, and S. Leide- Svegborn, “An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals,” Radiat. Prot. Dosimetry, vol. 162, no. 3, pp. 299–305, Dec. 2014, doi: 10.1093/rpd/nct337.

[136] W. Rühm et al., “Dose-rate effects in radiation biology and radiation protection,” Ann. ICRP, vol. 45, no. 1_suppl, pp. 262–279, Jun. 2016, doi: 10.1177/0146645316629336.

[137] ICRP, 2012, “ICRP Statement on Tissue Reactions / Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context,” ICRP Publication 118. Ann. ICRP 41(1/2).

[138] International Commission on Radiation Units and Measurements (ICRU), “ICRU Report 85a - Fundamental Quantities And Units For Ionizing Radiation (Revised),” J. ICRU, 2011.

[139] W. E. Bolch, K. F. Eckerman, G. Sgouros, and S. R. Thomas, “MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature,” J. Nucl. Med., vol. 50, no. 3, pp. 477–484, Feb. 2009, doi: 10.2967/jnumed.108.056036.

[140] P. B. Zanzonico, “Internal radionuclide radiation dosimetry: a review of basic concepts and recent developments.,” J. Nucl. Med., vol. 41, no. 2, pp. 297–308, Feb. 2000, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10688115.

[141] G. L. DeNardo, M. E. Juweid, C. A. White, G. A. Wiseman, and S. J. DeNardo, “Role of radiation dosimetry in radioimmunotherapy planning and treatment dosing,” Crit. Rev. Oncol. Hematol., vol. 39, no. 1–2, pp. 203–218, Aug. 2001, doi: 10.1016/S1040-8428(01)00109-3.

[142] D. R. Fisher, “Internal dosimetry for systemic radiation therapy,” Semin. Radiat. Oncol., vol. 10, no. 2, pp. 123–132, Apr. 2000, doi: 10.1016/S1053-4296(00)80049-1.

[143] M. G. Stabin, “Developments in the internal dosimetry of radiopharmaceuticals,” Radiat. Prot. Dosimetry, vol. 105, no. 1–4, pp. 575– 580, Jul. 2003, doi: 10.1093/oxfordjournals.rpd.a006306.

[144] D. K. Kontogeorgakos, P. A. Dimitriou, G. S. Limouris, and L. J. Vlahos, “Patient-specific dosimetry calculations using mathematic models of different anatomic sizes during therapy with 111In-DTPA-D-Phe1-octreotide infusions after catheterization of the hepatic artery.,” J. Nucl. Med., vol. 47, no. 9, pp. 1476–82, Sep. 2006, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16954556.

[145] X. G. Xu and K. F. Eckerman, Eds., Handbook of Anatomical Models for Radiation Dosimetry. CRC Press, 2009.

[146] W. S. Snyder, M. R. Ford, G. G. Warner, et al., “Tabulation of dose equivalent per microcurie-day for source and target organs of an adult for various radionuclides,” Oak Ridge, TN (United States), Nov. 1975. doi: 10.2172/4182057.

[147] M. Cristy and K. F. Eckerman, “Specific absorbed fractions of energy at various ages from internal photon sources: 3, Five-year-old,” Oak Ridge, TN (United States), Apr. 1987. doi: 10.2172/6263443.

[148] ICRP, 1975. “Report of the Task Group on Reference Man,” ICRP Publication 23. Pergamon Press, Oxford.

[149] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W. Tsui, “4D XCAT phantom for multimodality imaging research,” Med. Phys., vol. 37, no. 9, pp. 4902–4915, Aug. 2010, doi: 10.1118/1.3480985.

[150] I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, “Computerized three-dimensional segmented human anatomy,” Med. Phys., vol. 21, no. 2, pp. 299–302, Feb. 1994, doi: 10.1118/1.597290.

[151] I. Clairand, L. G. Bouchet, M. Ricard, M. Durigon, M. Di Paola, and B. Aubert, “Improvement of internal dose calculations using mathematical models of different adult heights,” Phys. Med. Biol., vol. 45, no. 10, pp. 2771–2785, Oct. 2000, doi: 10.1088/0031-9155/45/10/304.

[152] N. Petoussi-Henss, M. Zankl, U. Fill, and D. Regulla, “The GSF family of voxel phantoms,” Phys. Med. Biol., vol. 47, no. 1, pp. 89–106, Jan. 2002, doi: 10.1088/0031-9155/47/1/307.

[153] M. Caon, “Voxel-based computational models of real human anatomy: a review,” Radiat. Environ. Biophys., vol. 42, no. 4, pp. 229–235, Feb. 2004, doi: 10.1007/s00411-003-0221-8.

[154] M. Zankl, J. Becker, U. Fill, N. Petoussi-Henss, and K. F. Eckerman, “GSF male and female adult voxel models representing ICRP reference man - The present status,” in Monte Carlo 2005 Topical Meeting, 2005.

[155] “US-Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki (DS86),” Nature, Jul. 2003, doi: 10.1038/news030728-8.

[156] K. Saito et al., “Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system,” Radiat. Environ. Biophys., vol. 40, no. 1, pp. 69–76, Mar. 2001, doi: 10.1007/s004110000082.

[157] K. Saito, S. Koga, Y. Ida, T. Kamei, and J. Funabiki, “Construction of a Voxel Phantom Based on CT Data for a Japanese Female Adult and Its Use for Calculation of Organ Doses from External Electrons,” Japanese J. Heal. Phys., vol. 43, no. 2, pp. 122–130, 2008, doi: 10.5453/jhps.43.122.

[158] K. Sato, H. Noguchi, Y. Emoto, S. Koga, and K. Saito, “Japanese adult male voxel phantom constructed on the basis of CT images,” Radiat. Prot. Dosimetry, vol. 123, no. 3, pp. 337–344, Feb. 2007, doi: 10.1093/rpd/ncl101.

[159] K. Sato, H. Noguchi, Y. Emoto, S. Koga, and K. Saito, “Development of a Japanese Adult Female Voxel Phantom,” J. Nucl. Sci. Technol., vol. 46, no. 9, pp. 907–913, Sep. 2009, doi: 10.1080/18811248.2009.9711599.

[160] ICRP, 1991. “1990 Recommendations of the International Commission on Radiological Protection,” ICRP Publication 60. Ann. ICRP 21 (1-3).

[161] J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, J. M. Boone, and E. J. Goldschmidt, “The Essential Physics of Medical Imaging,” Med. Phys., vol. 30, no. 7, pp. 1936–1936, Jul. 2003, doi: 10.1118/1.1585033.

[162] A. Hata et al., “Effect of Matrix Size on the Image Quality of Ultra-high- resolution CT of the Lung,” Acad. Radiol., vol. 25, no. 7, pp. 869–876, Jul. 2018, doi: 10.1016/j.acra.2017.11.017.

[163] Oxford University, “Home: Oxford English Dictionary,” Oxford University Press. 2005, Accessed: Jun. 06, 2020. [Online]. Available: https://www.oed.com/.

[164] ICRP, 1977. “Recommendations of the ICRP,” ICRP Publication 26. Ann. ICRP 1 (3).

[165] ICRP, 2015. “Radiation Dose to Patients from radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances,” ICRP Publication 128. Ann. ICRP 44(2S).

[166] “Tc-99m pertechnetate | Radiology Reference Article | Radiopaedia.org.” https://radiopaedia.org/articles/tc-99m-pertechnetate?lang=us (accessed Jun. 06, 2020).

[167] K. F. Eckerman, R. W. Leggett, M. Cristy, et al., “User’s Guide to the DCAL System,” Oak Ridge (USA), 2006. [Online]. Available: https://www.epa.gov/sites/production/files/2015-02/documents/dcal- manual.pdf.

[168] K.F. Eckerman, et al., “Federal Guidance Report No. 12,” 1993.

[169] ICRP, 1988. “Radiation Dose to Patients from Radiopharmaceuticals,” ICRP Publication 53. Ann. ICRP 18 (1-4).

[170] ICRP, 1992. “Radiological Protection in Biomedical Research,” ICRP Publication 62. Ann. ICRP 22 (3).

[171] ICRP, 1998. “Radiation Dose to Patients from Radiopharmaceuticals (Addendum to ICRP Publication 53),” ICRP Publication 80. Ann. ICRP 28 (3).

[172] ICRP, 2008. “Radiation Dose to Patients from Radiopharmaceuticals - Addendum 3 to ICRP Publication 53,” ICRP Publication 106. Ann. ICRP 38 (1-2).

[173] ICRP, 2019. “Radiological protection in therapy with radiopharmaceuticals,” ICRP Publication 140. Ann. ICRP 48(1).

[174] K. J. Kearfott, “ICRU Report 67: Absorbed-Dose Specification in Nuclear Medicine,” Health Phys., vol. 85, no. 1, p. 113, Jul. 2003, doi: 10.1097/00004032-200307000-00023.

[175] “Internal Radiation Dose in Diagnostic Nuclear Medicine HD Roedler, A Kaul, GJ Hine. Berlin, Verlag H. Hoffmann, 1978. US distribution: Verlag H. Hoffmann, 961 Gapter Road, Boulder, CO 80303,” J. Nucl. Med., vol. 20, no. 7, pp. 812–812, 1979.

[176] A. R. Benedetto, “NCRP Report No. 70, Nuclear Medicine-Factors Influencing the Choice and Use of Radionuclides in Diagnosis and Therapy by National Council on Radiation Protection and Measurements,” Med. Phys., vol. 10, no. 5, pp. 721–721, Sep. 1983, doi: 10.1118/1.595414.

[177] L. Johansson, S. Mattsson, B. Nosslin, and S. Leide-Svegborn, “Effective dose from radiopharmaceuticals,” Eur. J. Nucl. Med., vol. 19, no. 11, Nov. 1992, doi: 10.1007/BF00175858.

[178] ARSAC, “Notes for guidance on the clinical administration of radiopharmaceuticals and use of sealed radioactive sources. Administration of Radioactive Substances Advisory Committee.,” Nucl. Med. Commun., vol. 21 Suppl, pp. S1-93, Jan. 2000, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10732169.

[179] “RADAR Home.” http://www.doseinfo-radar.com/RADARHome.html (accessed Jun. 06, 2020).

[180] C. S. Adcock, E. Florez, K. A. Zand, A. Patel, C. M. Howard, and A. Fatemi, “Assessment of Treatment Response Following Yttrium-90 Transarterial Radioembolization of Liver Malignancies,” Cureus, Jun. 2018, doi: 10.7759/cureus.2895.

[181] C. Müller et al., “Preclinical investigations and first-in-human application of 152Tb-PSMA-617 for PET/CT imaging of prostate cancer,” EJNMMI Res., vol. 9, no. 1, p. 68, Dec. 2019, doi: 10.1186/s13550-019-0538-1.

[182] N. Gracheva et al., “Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy,” EJNMMI Radiopharm. Chem., vol. 4, no. 1, p. 12, Dec. 2019, doi: 10.1186/s41181-019-0063-6.

[183] C. Müller et al., “Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer,” Eur. J. Nucl. Med. Mol. Imaging, vol. 46, no. 9, pp. 1919– 1930, Aug. 2019, doi: 10.1007/s00259-019-04345-0.

[184] N. J. M. Klaassen, M. J. Arntz, A. Gil Arranja, J. Roosen, and J. F. W. Nijsen, “The various therapeutic applications of the medical isotope holmium-166: a narrative review,” EJNMMI Radiopharm. Chem., vol. 4, no. 1, p. 19, Dec. 2019, doi: 10.1186/s41181-019-0066-3.

[185] R. C. Bakker et al., “Intratumoral injection of radioactive holmium-166 microspheres in recurrent head and neck squamous cell carcinoma,” Nucl. Med. Commun., vol. 39, no. 3, pp. 213–221, Mar. 2018, doi: 10.1097/MNM.0000000000000792.

[186] ICRP, 2012. “Compendium of Dose Coefficients based on ICRP Publication 60,” ICRP Publication 119. Ann. ICRP 41(Suppl.).

[187] J. Gustafsson, G. Brolin, M. Cox, M. Ljungberg, L. Johansson, and K. S. Gleisner, “Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy,” Phys. Med. Biol., vol. 60, no. 21, pp. 8329–8346, Nov. 2015, doi: 10.1088/0031-9155/60/21/8329.

[188] H. D. Roedler, “Accuracy of internal dose calculations with special consideration of radiopharmaceutical biokinetics,” Int. J. Nucl. Med. Biol., vol. 10, no. 1, pp. 37–38, Jan. 1983, doi: 10.1016/0047-0740(83)90032-3.

[189] K. Norrgren, S. L. Svegborn, J. Areberg, and S. Mattsson, “Accuracy of the Quantification of Organ Activity from Planar Gamma Camera Images,” Cancer Biother. Radiopharm., vol. 18, no. 1, pp. 125–131, Feb. 2003, doi: 10.1089/108497803321269403.

[190] M. G. Stabin, “Uncertainties in Internal Dose Calculations for Radiopharmaceuticals,” J. Nucl. Med., vol. 49, no. 5, pp. 853–860, Apr. 2008, doi: 10.2967/jnumed.107.048132.

[191] M. Andersson, S. Mattsson, L. Johansson, and S. Leide-Svegborn, “A biokinetic and dosimetric model for ionic indium in humans,” Phys. Med. Biol., vol. 62, no. 16, pp. 6397–6407, Jul. 2017, doi: 10.1088/1361-6560/aa779f.

[192] S. Hashimoto and T. Sato, “Estimation method of systematic uncertainties in Monte Carlo particle transport simulation based on analysis of variance,” J. Nucl. Sci. Technol., vol. 56, no. 4, pp. 345–354, Apr. 2019, doi: 10.1080/00223131.2019.1585989.

[193] B. P. Chu, “Safety Reports Series No. 63, Release of Patients After Radionuclide Therapy,” Health Phys., vol. 104, no. 1, p. 117, Jan. 2013, doi: 10.1097/HP.0b013e31826f551f.

[194] IAEA, “International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources,” Vienna, 1996.

[195] ICRP, 2007. “Radiation Protection in Medicine,” ICRP Publication 105. Ann. ICRP 37 (6).

[196] National Council on Radiation Protection and Measurements, “Management of Radionuclide Therapy Patients,” MD, 2006.

[197] J. A. Siegel, C. S. Marcus, and R. B. Sparks, “Calculating the absorbed dose from radioactive patients: the line-source versus point-source model.,” J. Nucl. Med., vol. 43, no. 9, pp. 1241–4, Sep. 2002, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12215565.

[198] J. A. Siegel and R. B. Sparks, “Radioactivity Appearing at Landfills in Household Trash of Nuclear Medicine Patients: Much Ado About Nothing?,” Health Phys., vol. 82, no. 3, pp. 367–372, Mar. 2002, doi: 10.1097/00004032-200203000-00009.

[199] E. Lubin, “Definitive improvement in the approach to the treated patient as a radioactive source,” Journal of Nuclear Medicine, vol. 43, no. 3. pp. 364– 365, 2002.

[200] National Council on Radiation Protection and Measurements, “Dose Limits for Individuals Who Receive Exposure from Radionuclide Therapy Patients,” MD, 1995.

[201] S. Mattsson and C. Bernhardsson, “Release of Patients After Radionuclide Therapy: Radionuclide Releases to the Environment from Hospitals and Patients,” in Radiation Protection in Nuclear Medicine, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 139–148.

[202] ICRP, 2004. “Release of Patients after Therapy with Unsealed Radionuclides,” ICRP Publication 94. Ann. ICRP 34 (2).

[203] ICRU, “Report 39,” J. Int. Comm. Radiat. Units Meas., vol. os20, no. 2, p. NP-NP, Feb. 1985, doi: 10.1093/jicru/os20.2.Report39.

[204] ICRP, 2015. “Occupational Intakes of Radionuclides: Part 1,” ICRP Publication 130. Ann. ICRP 44(2).

[205] ICRP, 2016. “Occupational Intakes of Radionuclides: Part 2,” ICRP Publication 134. Ann. ICRP 45(3/4), 1–352.

[206] ICRP, 2017. “Occupational Intakes of Radionuclides: Part 3,” ICRP Publication 137. Ann. ICRP 46(3/4).

[207] ICRP, 2019. “Occupational Intakes of Radionuclides: Part 4,” ICRP Publication 141. Ann. ICRP 48(2/3).

[208] A. Birchall et al., “IMBA Professional Plus: a flexible approach to internal dosimetry,” Radiat. Prot. Dosimetry, vol. 125, no. 14, pp. 194–197, Dec. 2006, doi: 10.1093/rpd/ncl171.

[209] N. Ishigure, “Development of software for internal dose calculation from bioassay measurements,” Radiat. Prot. Dosimetry, vol. 109, no. 3, pp. 235– 242, Jul. 2004, doi: 10.1093/rpd/nch048.

[210] K. Manabe, K. Sato, and F. Takahashi, “Estimating internal dose coefficients of short-lived radionuclides in accordance with ICRP 2007 recommendations,” J. Nucl. Sci. Technol., vol. 56, no. 5, pp. 385–393, May 2019, doi: 10.1080/00223131.2019.1585988.

[211] WHO, “Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami, based on a preliminary dose estimation,” 2013. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/78218/9789241505130_en g.pdf;jsessionid=BAD5BCF73244D49609AD264646F3C385?sequence=1.

[212] J. L. Humm, R. W. Howell, and D. V. Rao, “Dosimetry of Auger-electron- emitting radionuclides: Report No. 3 of AAPM Nuclear Medicine Task Group No. 6,” Med. Phys., vol. 21, no. 12, pp. 1901–1915, Dec. 1994, doi: 10.1118/1.597227.

参考文献をもっと見る