リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Blockage of retinoic acid signaling via RARγ suppressed the proliferation of pancreatic cancer cells by arresting the cell cycle progression of the G1-S phase」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Blockage of retinoic acid signaling via RARγ suppressed the proliferation of pancreatic cancer cells by arresting the cell cycle progression of the G1-S phase

Yamakawa, Kohei Koyanagi-Aoi, Michiyo Machinaga, Akihito Kakiuchi, Nobuyuki Hirano, Tomonori Kodama, Yuzo Aoi, Takashi 神戸大学

2023.05.17

概要

Background Our study and several studies have reported that in some cancers, including pancreatic ductal adenocarcinoma (PDAC), the expression of squamous lineage markers, such as esophagus-tissue-specific genes, correlated with a poor prognosis. However, the mechanism by which the acquisition of squamous lineage phenotypes leads to a poor prognosis remains unclear. We previously reported that retinoic acid signaling via retinoic acid receptor γ (RARγ signaling) determines the differentiation lineage into the esophageal squamous epithelium. These findings hypothesized that the activation of RARγ signaling contributed to acquiring squamous lineage phenotypes and malignant behavior in PDAC. Methods This study utilized public databases and immunostaining of surgical specimens to examine RARγ expression in PDAC. We evaluated the function of RARγ signaling by inhibitors and siRNA knockdown using a PDAC cell line and patient-derived PDAC organoids. The mechanism of the tumor-suppressive effects by blocking RARγ signaling was examined by a cell cycle analysis, apoptosis assays, RNA sequencing and Western blotting. Results RARγ expression in pancreatic intraepithelial neoplasia (PanIN) and PDAC was higher than that in the normal pancreatic duct. Its expression correlated with a poor patient prognosis in PDAC. In PDAC cell lines, blockade of RARγ signaling suppressed cell proliferation by inducing cell cycle arrest in the G1 phase without causing apoptosis. We demonstrated that blocking RARγ signaling upregulated p21 and p27 and downregulated many cell cycle genes, including cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6. Furthermore, using patient-derived PDAC organoids, we confirmed the tumor-suppressive effect of RARγ inhibition and indicated the synergistic effects of RARγ inhibition with gemcitabine. Conclusions This study clarified the function of RARγ signaling in PDAC progression and demonstrated the tumor-suppressive effect of selective blockade of RARγ signaling against PDAC. These results suggest that RARγ signaling might be a new therapeutic target for PDAC.

この論文で使われている画像

参考文献

1. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray

F. Global Cancer statistics for the year 2020: an overview. Int J Cancer. 2021.

https://doi.org/10.1002/ijc.33588

2. Pourshams A, Sepanlou SG, Ikuta KS, Bisignano C, Safiri S, Roshandel G, Sharif

M, Khatibian M, Fitzmaurice C, Nixon MR, et al. The global, regional, and

national burden of pancreatic cancer and its attributable risk factors in 195

countries and territories, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2019;4(12):934–47.

3. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med.

2014;371(11):1039–49.

4. Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer

Genome Atlas Research N: Integrated genomic characterization of pancreatic

ductal adenocarcinoma. Cancer Cell. 2017;32(2):185–203. e113.

5. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, Park JO, Hochhauser D, Arnold D, Oh DY, et al. Maintenance olaparib for germline BRCAMutated metastatic pancreatic Cancer. N Engl J Med. 2019;381(4):317–27.

6. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa

P, Walde D, Wolff RA, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial

of the National Cancer Institute of Canada clinical trials Group. J Clin Oncol.

2007;25(15):1960–6.

7. Malinova A, Veghini L, Real FX, Corbo V. Cell lineage infidelity in PDAC progression and Therapy Resistance. Front Cell Dev Biol. 2021;9:795251.

8. Yamakawa K, Koyanagi-Aoi M, Uehara K, Masuda A, Yanagimoto H, Toyama H,

Fukumoto T, Kodama Y, Aoi T. Increased expression of SPRR1A is associated

with a poor prognosis in pancreatic ductal adenocarcinoma. PLoS ONE.

2022;17(5):e0266620.

9. Koterazawa Y, Koyanagi-Aoi M, Uehara K, Kakeji Y, Aoi T. Retinoic acid receptor

gamma activation promotes differentiation of human induced pluripotent

stem cells into esophageal epithelium. J Gastroenterol. 2020;55(8):763–74.

10. di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C,

Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med. 2015;41:1–115.

11. Mohammad Sultan KMC. Retinoid Signaling in Cancer and its Promise for

Therapy. J Carcinog Mutagen. 2013. https://doi.org/10.4172/2157-2518.

S7-006

12. Colvin EK, Susanto JM, Kench JG, Ong VN, Mawson A, Pinese M, Chang DK,

Rooman I, O’Toole SA, Segara D, et al. Retinoid signaling in pancreatic cancer,

injury and regeneration. PLoS ONE. 2011;6(12):e29075.

13. Bleul T, Ruhl R, Bulashevska S, Karakhanova S, Werner J, Bazhin AV. Reduced

retinoids and retinoid receptors’ expression in pancreatic cancer: a link to

patient survival. Mol Carcinog. 2015;54(9):870–9.

Yamakawa et al. Cancer Cell International

(2023) 23:94

14. Leelawat K, Ohuchida K, Mizumoto K, Mahidol C, Tanaka M. All-trans

retinoic acid inhibits the cell proliferation but enhances the cell invasion

through up-regulation of c-met in pancreatic cancer cells. Cancer Lett.

2005;224(2):303–10.

15. Gupta S, Pramanik D, Mukherjee R, Campbell NR, Elumalai S, de Wilde

RF, Hong SM, Goggins MG, De Jesus-Acosta A, Laheru D, et al. Molecular

determinants of retinoic acid sensitivity in pancreatic cancer. Clin Cancer Res.

2012;18(1):280–9.

16. Moore DF Jr, Pazdur R, Sugarman S, Jones D 3rd, Lippman SM, Bready B,

Abbruzzese JL. Pilot phase II trial of 13-cis-retinoic acid and interferon-alpha

combination therapy for advanced pancreatic adenocarcinoma. Am J Clin

Oncol. 1995;18(6):525–7.

17. Michael A, Hill M, Maraveyas A, Dalgleish A, Lofts F. 13-cis-retinoic acid in

combination with gemcitabine in the treatment of locally advanced and

metastatic pancreatic cancer–report of a pilot phase II study. Clin Oncol (R

Coll Radiol). 2007;19(2):150–3.

18. Polvani S, Tarocchi M, Tempesti S, Galli A. Nuclear receptors and pathogenesis

of pancreatic cancer. World J Gastroenterol. 2014;20(34):12062–81.

19. Kaiser A, Herbst H, Fisher G, Koenigsmann M, Berdel WE, Riecken EO, Rosewicz S. Retinoic acid receptor beta regulates growth and differentiation in

human pancreatic carcinoma cells. Gastroenterology. 1997;113(3):920–9.

20. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg

J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al. Analysis of

the human tissue-specific expression by genome-wide integration of

transcriptomics and antibody-based proteomics. Mol Cell Proteomics.

2014;13(2):397–406.

21. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A,

Sivertsson A, Kampf C, Sjostedt E, Asplund A et al. Proteomics. Tissue-based

map of the human proteome. Science 2015, 347(6220):1260419.

22. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo

MA, Mulvihill SJ. Phenotype and genotype of pancreatic cancer cell lines.

Pancreas. 2010;39(4):425–35.

23. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd,

Barretina J, Gelfand ET, Bielski CM, Li H, et al. Next-generation characterization

of the Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503–8.

24. Uehara K, Koyanagi-Aoi M, Koide T, Itoh T, Aoi T. Epithelial-derived factors

induce muscularis mucosa of human induced pluripotent stem cell-derived

gastric organoids. Stem Cell Reports. 2022;17(4):820–34.

25. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of

image analysis. Nat Methods. 2012;9(7):671–5.

26. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,

Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

27. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid

Res. 2002;43(11):1773–808.

28. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo

P, Carter H, Kamiyama H, Jimeno A, et al. Core signaling pathways in

human pancreatic cancers revealed by global genomic analyses. Science.

2008;321(5897):1801–6.

29. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase

cascade to treat cancer. Nat Rev Cancer. 2004;4(12):937–47.

30. Chesnokov MS, Khan I, Park Y, Ezell J, Mehta G, Yousif A, Hong LJ, Buckanovich

RJ, Takahashi A, Chefetz I. The MEK1/2 Pathway as a Therapeutic Target in

High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021, 13(6).

31. Ma Y, Hendershot LM. The role of the unfolded protein response in tumour

development: friend or foe? Nat Rev Cancer. 2004;4(12):966–77.

32. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et al. Increased survival in pancreatic cancer with

nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.

33. Huang GL, Luo Q, Rui G, Zhang W, Zhang QY, Chen QX, Shen DY. Oncogenic

activity of retinoic acid receptor gamma is exhibited through activation of

Page 15 of 15

34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. the Akt/NF-kappaB and Wnt/beta-catenin pathways in cholangiocarcinoma.

Mol Cell Biol. 2013;33(17):3416–25.

Yan TD, Wu H, Zhang HP, Lu N, Ye P, Yu FH, Zhou H, Li WG, Cao X, Lin YY, et

al. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular

carcinoma. Cancer Res. 2010;70(6):2285–95.

Huang GL, Song W, Zhou P, Fu QR, Lin CL, Chen QX, Shen DY. Oncogenic

retinoic acid receptor gamma knockdown reverses multi-drug resistance

of human colorectal cancer via Wnt/beta-catenin pathway. Cell Cycle.

2017;16(7):685–92.

Ji K, Dou W, Zhang N, Wen B, Zhong M, Zhang Q, Xu S, Zhou J, Liu J. Retinoic

acid receptor gamma is required for proliferation of pancreatic cancer cells.

Cell Biol Int. 2022;47(1):144–55.

Brown G, Petrie K. The RARgamma Oncogene: an Achilles Heel for some

cancers. Int J Mol Sci. 2021;22(7):3632.

Turner NC, Neven P, Loibl S, Andre F. Advances in the treatment of

advanced oestrogen-receptor-positive breast cancer. The Lancet.

2017;389(10087):2403–14.

Witkiewicz AK, Borja NA, Franco J, Brody JR, Yeo CJ, Mansour J, Choti MA,

McCue P, Knudsen ES. Selective impact of CDK4/6 suppression on patientderived models of pancreatic cancer. Oncotarget. 2015;6(18):15788–801.

Heilmann AM, Perera RM, Ecker V, Nicolay BN, Bardeesy N, Benes CH, Dyson

NJ. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of

p16INK4A-deficient pancreatic cancers. Cancer Res. 2014;74(14):3947–58.

Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: current challenges and future opportunities. World J Gastroenterol.

2021;27(39):6527–50.

McClendon AK, Dean JL, Rivadeneira DB, Yu JE, Reed CA, Gao E, Farber JL,

Force T, Koch WJ, Knudsen ES. CDK4/6 inhibition antagonizes the cytotoxic

response to anthracycline therapy. Cell Cycle. 2012;11(14):2747–55.

Salvador-Barbero B, Alvarez-Fernandez M, Zapatero-Solana E, El Bakkali A,

Menendez MDC, Lopez-Casas PP, Di Domenico T, Xie T, VanArsdale T, Shields

DJ, et al. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in

pancreatic adenocarcinoma. Cancer Cell. 2020;37(3):340–353e346.

Li Q, Yin L, Jones LW, Chu GC, Wu JB, Huang JM, Li Q, You S, Kim J, Lu YT, et

al. Keratin 13 expression reprograms bone and brain metastases of human

prostate cancer cells. Oncotarget. 2016;7(51):84645–57.

Zhang Z, Tu K, Liu F, Liang M, Yu K, Wang Y, Luo Y, Yang B, Qin Y, He D, et al.

FoxM1 promotes the migration of ovarian cancer cell through KRT5 and

KRT7. Gene. 2020;757:144947.

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens

LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al. Understanding

the tumor immune microenvironment (TIME) for effective therapy. Nat Med.

2018;24(5):541–50.

Vonlaufen A, Phillips PA, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells and pancreatic cancer cells: an unholy alliance. Cancer

Res. 2008;68(19):7707–10.

Froeling FE, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA, Clevers H,

Hart IR, Kocher HM. Retinoic acid-induced pancreatic stellate cell quiescence

reduces paracrine wnt-beta-catenin signaling to slow tumor progression.

Gastroenterology. 2011;141(4):1486–97. 1497 e1481-1414.

Guan J, Zhang H, Wen Z, Gu Y, Cheng Y, Sun Y, Zhang T, Jia C, Lu Z, Chen J.

Retinoic acid inhibits pancreatic cancer cell migration and EMT through

the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett.

2014;345(1):132–9.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る