リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Empirical formulation of broadband complex refractive index spectra of single-chirality carbon nanotube assembly」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Empirical formulation of broadband complex refractive index spectra of single-chirality carbon nanotube assembly

Nishihara, Taishi Takakura, Akira Shimasaki, Masafumi Matsuda, Kazunari Tanaka, Takeshi Kataura, Hiromichi Miyauchi, Yuhei 京都大学 DOI:10.1515/nanoph-2021-0728

2022.02

概要

Assemblies of single-walled carbon nanotubes with a specific chiral structure are promising future optofunctional materials because of their strong light-matter coupling arising from sharp optical resonances of quasi-one-dimensional excitons. Their strong optical resonances, which lie in the infrared-to-visible wavelength region, can be selected by their chiralities, and this selectivity promises a wide range of applications including photonic and thermo-optic devices. However, the broadband complex optical spectra of single-chirality carbon nanotube assemblies are scarce in the literature, which has prevented researchers and engineers from designing devices using them. Here, we experimentally determine broadband complex refractive index spectra of single-chirality carbon nanotube assemblies. Free-standing carbon nanotube membranes and those placed on sapphire substrates were fabricated via filtration of the nanotube solution prepared by the separation method using gel chromatography. Transmission and reflection spectra were measured in the mid-infrared to visible wavelength region, and the complex refractive indices of nanotube assemblies were determined as a function of photon energy. The real and imaginary parts of the refractive indices of the nanotube membrane with a bulk density of 1 g cm(-3) at the first subband exciton resonance were determined to be approximately 2.7-3.6 and 1.3i-2.4i, respectively. We propose an empirical formula that phenomenologically describes the complex refractive index spectra of various single-chirality nanotube membranes, which can facilitate the design of photonic devices using carbon nanotubes as the material.

この論文で使われている画像

参考文献

[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature,

vol. 354, pp. 56–58, 1991.

[2] H. Dai, E. W. Wong, and C. M. Lieber, “Probing electrical transport

in nanomaterials: conductivity of individual carbon nanotubes,”

Science, vol. 272, pp. 523–526, 1996.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T. Nishihara et al.: Complex refractive index spectra of single-chirality CNT assembly

[3] S. J. Tans, M. H. Devoret, H. Dai, et al., “Individual single-wall

carbon nanotubes as quantum wires,” Nature, vol. 386,

pp. 474–477, 1997.

[4] C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, “Thermal

conductance and thermopower of an individual single-wall

carbon nanotube,” Nano Lett., vol. 5, pp. 1842–1846, 2005.

[5] K. Yoshino, T. Kato, Y. Saito, et al., “Temperature distribution

and thermal conductivity measurements of chirality-assigned

single-walled carbon nanotubes by photoluminescence imaging

spectroscopy,” ACS Omega, vol. 3, pp. 4352–4356, 2018.

[6] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and

R. S. Ruoff, “Strength and breaking mechanism of multiwalled

carbon nanotubes under tensile load,” Science, vol. 287,

pp. 637–640, 2000.

[7] A. Takakura, K. Beppu, T. Nishihara, et al., “Strength of carbon

nanotubes depends on their chemical structures,” Nat.

Commun., vol. 10, p. 3040, 2019.

[8] D. Mann, Y. K. Kato, A. Kinkhabwala, et al., “Electrically driven

thermal light emission from individual single-walled carbon

nanotubes,” Nat. Nanotechnol., vol. 2, pp. 33–38, 2007.

[9] T. Nishihara, A. Takakura, Y. Miyauchi, and K. Itami, “Ultranarrow-band near-infrared thermal exciton radiation in intrinsic

one-dimensional semiconductors,” Nat. Commun., vol. 9,

p. 3144, 2018.

[10] M. Y. Sfeir, T. Beetz, F. Wang, et al., “Optical spectroscopy of

individual single-walled carbon nanotubes of defined chiral

structure,” Science, vol. 312, pp. 554–556, 2006.

[11] S. Konabe, T. Nishihara, and Y. Miyauchi, “Theory of exciton

thermal radiation in semiconducting single-walled carbon

nanotubes,” Opt. Lett., vol. 46, pp. 3021–3024, 2021.

[12] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,

“Electronic structure of chiral graphene tubules,” Appl. Phys.

Lett., vol. 60, pp. 2204–2206, 1992.

[13] J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and

C. Dekker, “Electronic structure of atomically resolved carbon

nanotubes,” Nature, vol. 391, pp. 59–62, 1998.

[14] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, “Atomic

structure and electronic properties of single-walled carbon

nanotubes,” Nature, vol. 391, pp. 62–64, 1998.

[15] H. Kataura, Y. Kumazawa, Y. Maniwa, et al., “Optical properties

of single-wall carbon nanotubes,” Synth. Met., vol. 103,

pp. 2555–2558, 1999.

[16] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Trigonal

warping effect of carbon nanotubes,” Phys. Rev. B, vol. 61,

pp. 2981–2990, 2000.

[17] K. Liu, J. Deslippe, F. Xiao, et al., “An atlas of carbon nanotube

optical transitions,” Nat. Nanotechnol., vol. 7, pp. 325–329, 2012.

[18] T. Dumitrica, M. Hua, and B. I. Yakobson, “Symmetry-, time-, and

temperature-dependent strength of carbon nanotubes,” Proc.

Natl. Acad. Sci., vol. 103, pp. 6105–6109, 2006.

[19] M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of

single-walled carbon nanotubes by diameter in density

gradients,” Nano Lett., vol. 5, pp. 713–718, 2005.

[20] S. Ghosh, S. M. Bachilo, and R. B. Weisman, “Advanced sorting

of single-walled carbon nanotubes by nonlinear densitygradient ultracentrifugation,” Nat. Nanotechnol., vol. 5,

pp. 443–450, 2010.

[21] M. Zheng, A. Jagota, E. Semke, et al., “DNA-assisted dispersion

and separation of carbon nanotubes,” Nat. Mater., vol. 2,

pp. 338–342, 2003.

1019

[22] X. Tu, S. Manohar, A. Jagota, and M. Zheng, “DNA sequence

motifs for structure-specific recognition and separation of

carbon nanotubes,” Nature, vol. 460, pp. 250–253, 2009.

[23] T. Lei, X. Chen, G. Pitner, H.-S. P. Wong, and Z. Bao,

“Removable and recyclable conjugated polymers for highly

selective and high-yield dispersion and release of low-cost

carbon nanotubes,” J. Am. Chem. Soc., vol. 138, pp. 802–805,

2016.

[24] D. Liu, P. Li, X. Yu, et al., “A mixed‐extractor strategy for efficient

sorting of semiconducting single‐walled carbon nanotubes,”

Adv. Mater., vol. 29, p. 1603565, 2017.

[25] J. A. Fagan, C. Y. Khripin, C. A. S. Batista, et al., “Isolation of

specific small‐diameter single‐wall carbon nanotube species via

aqueous two‐phase extraction,” Adv. Mater., vol. 26,

pp. 2800–2804, 2014.

[26] J. A. Fagan, E. H. Hároz, R. Ihly, et al., “Isolation of >1 nm diameter

single-wall carbon nanotube species using aqueous two-phase

extraction,” ACS Nano, vol. 9, pp. 5377–5390, 2015.

[27] H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale singlechirality separation of single-wall carbon nanotubes by simple

gel chromatography,” Nat. Commun., vol. 2, p. 309, 2011.

[28] Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and

H. Kataura, “Industrial-scale separation of high-purity singlechirality single-wall carbon nanotubes for biological imaging,”

Nat. Commun., vol. 7, p. 12056, 2016.

[29] Y. Yomogida, T. Tanaka, M. Tsuzuki, X. Wei, and H. Kataura,

“Automatic sorting of single-chirality single-wall carbon

nanotubes using hydrophobic cholates: implications for

multicolor near-infrared optical technologies,” ACS Appl. Nano

Mater., vol. 3, pp. 11289–11297, 2020.

[30] Y. Bai, R. Zhang, X. Ye, et al., “Carbon nanotube bundles with

tensile strength over 80 GPa,” Nat. Nanotechnol., vol. 13,

pp. 589–595, 2018.

[31] R. S. Prasher, X. J. Hu, Y. Chalopin, et al., “Turning carbon

nanotubes from exceptional heat conductors into insulators,”

Phys. Rev. Lett., vol. 102, p. 105901, 2009.

[32] X. He, W. Gao, L. Xie, et al., “Wafer-scale monodomain films of

spontaneously aligned single-walled carbon nanotubes,” Nat.

Nanotechnol., vol. 11, pp. 633–638, 2016.

[33] A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather,

“Near-infrared exciton–polaritons in strongly coupled singlewalled carbon nanotube microcavities,” Nat. Commun., vol. 7,

p. 13078, 2016.

[34] A. Graf, M. Held, Y. Zakharko, L. Tropf, M. C. Gather, and

J. Zaumseil, “Electrical pumping and tuning of exciton-polaritons

in carbon nanotube microcavities,” Nat. Mater., vol. 16,

pp. 911–917, 2017.

[35] W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition

between weak and ultrastrong coupling through exceptional

points in carbon nanotube microcavity exciton–polaritons,” Nat.

Photonics, vol. 12, pp. 362–367, 2018.

[36] K. Yanagi, R. Okada, Y. Ichinose, et al., “Intersubband plasmons

in the quantum limit in gated and aligned carbon nanotubes,”

Nat. Commun., vol. 9, p. 1121, 2018.

[37] H. Nishidome, K. Nagai, K. Uchida, et al., “Control of

high-harmonic generation by tuning the electronic structure

and carrier injection,” Nano Lett., vol. 20, pp. 6215–6221,

2020.

[38] T. Ando, “Excitons in carbon nanotubes,” J. Phys. Soc. Jpn.,

vol. 66, pp. 1066–1073, 1997.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1020

T. Nishihara et al.: Complex refractive index spectra of single-chirality CNT assembly

[39] F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical

resonances in carbon nanotubes arise from excitons,” Science,

vol. 308, pp. 838–841, 2005.

[40] J. Maultzsch, R. Pomraenke, S. Reich, et al., “Exciton binding

energies in carbon nanotubes from two-photon

photoluminescence,” Phys. Rev. B, vol. 72, p. 241402, 2005.

[41] K. Momma and F. Izumi, “VESTA 3 for three-dimensional

visualization of crystal, volumetric and morphology data,”

J. Appl. Crystallogr., vol. 44, pp. 1272–1276, 2011.

[42] N. Wei, Y. Tian, Y. Liao, et al., “Colors of single‐wall carbon

nanotubes,” Adv. Mater., vol. 33, p. 2006395, 2021.

[43] M. Fox, Optical Properties of Solids, Oxford, Oxford University

Press, 2010.

[44] D. S. Bethune, “Optical harmonic generation and mixing

in multilayer media: analysis using optical transfer matrix

techniques,” J. Opt. Soc. Am. B, vol. 6, pp. 910–916, 1989.

[45] F. Yao, C. Liu, C. Chen, et al., “Measurement of complex optical

susceptibility for individual carbon nanotubes by elliptically

polarized light excitation,” Nat. Commun., vol. 9, p. 3387,

2018.

[46] F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, and

M. A. Pimenta, “Direct experimental evidence of exciton–

phonon bound states in carbon nanotubes,” Phys. Rev. Lett.,

vol. 95, p. 247401, 2005.

[47] Y. Miyauchi and S. Maruyama, “Identification of an excitonic

phonon sideband by photoluminescence spectroscopy of singlewalled carbon-13 nanotubes,” Phys. Rev. B, vol. 74, p. 035415,

2006.

[48] K. Liu, X. Hong, S. Choi, et al., “Systematic determination of

absolute absorption cross-section of individual carbon

nanotubes,” Proc. Natl. Acad. Sci., vol. 111, pp. 7564–7569,

2014.

[49] Y. Miyauchi, M. Oba, and S. Maruyama, “Cross-polarized optical

absorption of single-walled nanotubes by polarized

photoluminescence excitation spectroscopy,” Phys. Rev. B,

vol. 74, p. 205440, 2006.

[50] F. Katsutani, W. Gao, X. Li, et al., “Direct observation of

cross-polarized excitons in aligned single-chirality

single-wall carbon nanotubes,” Phys. Rev. B, vol. 99,

p. 035426, 2019.

[51] M. Y. Sfeir, F. Wang, L. Huang, et al., “Probing

electronic transitions in individual carbon nanotubes

by Rayleigh scattering,” Science, vol. 306, pp. 1540–1543,

2004.

[52] R. Senga, T. Pichler, Y. Yomogida, T. Tanaka, H. Kataura, and

K. Suenaga, “Direct proof of a defect-modulated gap transition in

semiconducting nanotubes,” Nano Lett., vol. 18, pp. 3920–3925,

2018.

[53] S. R. Sanchez, S. M. Bachilo, Y. Kadria-Vili, C.-W. Lin, and

R. B. Weisman, “Specific absorption cross sections of singlewalled carbon nanotubes measured by variance spectroscopy,”

Nano Lett., vol. 16, pp. 6903–6909, 2016.

Supplementary Material: The online version of this article offers

supplementary material (https://doi.org/10.1515/nanoph-2021-0728).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る