リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pattern of THK 5351 retention in normal aging involves core regions of resting state networks associated with higher cognitive function」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pattern of THK 5351 retention in normal aging involves core regions of resting state networks associated with higher cognitive function

Yoshida, Yusuke Yokoi, Takamasa Hara, Kazuhiro Watanabe, Hirohisa Yamaguchi, Hiroshi Bagarinao, Epifanio Masuda, Michihito Kato, Toshiyasu Ogura, Aya Ohdake, Reiko Kawabata, Kazuya Katsuno, Masahisa Kato, Katsuhiko Naganawa, Shinji Okamura, Nobuyuki Yanai, Kazuhiko Sobue, Gen 名古屋大学

2023.11

概要

Recent progress in imaging techniques, such as positron emission tomography (PET) and
magnetic resonance imaging (MRI), has enabled the visualization of not only amyloid β and
tau deposition, but also astrogliosis and alterations to anatomical and functional brain networks.
These imaging techniques have enabled researchers to examine simultaneously the deposition
patterns of abnormal proteins, gray matter atrophic changes, and functional alterations in living
diseased brain.
[18F]THK 5351 was initially developed as a tau tracer1 but became recognized mainly as a
monoamine oxidase-B (MAO-B) tracer.2,3 Its retention corresponded well to the known distribution of tau related to astrogliosis and to increased MAO-B associated with the clinical severity
and symptomatology of cognitive decline.1,3,4 Head-to-head comparison study demonstrated that
THK5351 was superior to C-L-deprenyl for visualizing lesions undergoing astrogliosis.5
Resting-state functional MRI (fMRI) has also proven to be very useful in examining the
brain connectome of both healthy subjects and patients. Alterations in the brain connectome
have been associated with psychiatric6,7 and neurodegenerative disorders.8-14 In the case of
Alzheimer’s disease (AD), associations with pathologic proteins and brain network changes have
been extensively investigated.15,16
Subprofile modeling/principal component analysis (SSM/PCA) is an unbiased data-driven
multivariate PCA-based approach. It enables us to identify major sources of variation in the brain
image data of both patients and control groups, to reduce the complexity of multivariate data.17-19
Using SSM/PCA, we identified a disease-specific spatial pattern of THK 5351 retention
composed mainly of three clusters, the precuneus/posterior cingulate cortex, and the right and
left dorsolateral prefrontal cortex.13 Disruption of the functional connections of the precuneus/
posterior cingulate cortex, which showed one of the highest retention rates of THK 5351, may
play an essential role in the development of dementia.
Only a limited number of imaging studies have explicitly investigated the association between
abnormal THK 5351 deposition, volumetric changes, and functional alterations in aging. Recently,
Shigemoto et al reported a significant negative correlation between THK 5351 accumulation and
gray matter volume in the bilateral medial temporal lobes.20 However, the spatial pattern of THK
5351 retention in healthy older adults has not been clearly elucidated. Besides, the relationship
between THK 5351 retention and resting state networks (RSNs) as assessed by MRI in healthy
subjects remains poorly understood.
Nagoya J. Med. Sci. 85. ...

この論文で使われている画像

参考文献

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Harada R, Okamura N, Furumoto S, et al. 18F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208–214. doi:10.2967/jnumed.115.164848.

Ng KP, Pascoal TA, Mathotaarachchi S, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18FTHK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25. doi:10.1186/s13195-017-0253-y.

Harada R, Ishiki A, Kai H, et al. Correlations of 18F-THK5351 PET with postmortem burden of tau and

astrogliosis in Alzheimer disease. J Nucl Med. 2018;59(4):671–674. doi:10.2967/jnumed.117.197426.

Tago T, Furumoto S, Okamura N, et al. Structure-activity relationship of 2-arylquinolines as PET

imaging tracers for tau pathology in Alzheimer disease. J Nucl Med. 2016;57(4):608–614. doi:10.2967/

jnumed.115.166652.

Ishibashi K, Kameyama M, Miura Y, Toyohara J, Ishii K. Head-to-Head Comparison of the Two MAO-B

Radioligands, 18F-THK5351 and 11C-L-Deprenyl, to Visualize Astrogliosis in Patients with Neurological

Disorders. Clin Nucl Med. 2021;46(1):e31-e33. doi:10.1097/RLU.0000000000003197.

Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol.

2008;21(4):424–430. doi:10.1097/WCO.0b013e328306f2c5.

Menon V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn

Sci. 2011;15(10):483–506. doi:10.1016/j.tics.2011.08.003.

Dai Z, Yan C, Li K, et al. Identifying and mapping connectivity patterns of brain network hubs in

Alzheimer’s disease. Cereb Cortex. 2015;25(10):3723–3742. doi:10.1093/cercor/bhu246.

Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s

disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):4637–

4642. doi:10.1073/pnas.0308627101.

Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ. Resting state functional connectivity of

the striatum in Parkinson’s disease. Brain. 2012;135(Pt 12):3699–3711. doi:10.1093/brain/aws281.

Kawabata K, Watanabe H, Hara K, et al. Distinct manifestation of cognitive deficits associate with

different resting-state network disruptions in non-demented patients with Parkinson’s disease. J Neurol.

2018;265(3):688–700. doi:10.1007/s00415-018-8755-5.

Yao N, Shek-Kwan Chang R, Cheung C, et al. The default mode network is disrupted in parkinson’s disease

with visual hallucinations. Hum Brain Mapp. 2014;35(11):5658–5666. doi:10.1002/hbm.22577.

Yokoi T, Watanabe H, Yamaguchi H, et al. Involvement of the precuneus/posterior cingulate cortex is

significant for the development of Alzheimer’s disease: A PET (THK5351, PiB) and resting fMRI study.

Front Aging Neurosci. 2018;10:304. doi:10.3389/fnagi.2018.00304.

Yoneyama N, Watanabe H, Kawabata K, et al. Severe hyposmia and aberrant functional connectivity in

cognitively normal Parkinson’s disease. PLoS One. 2018;13(1):e0190072. doi:10.1371/journal.pone.0190072.

Nagoya J. Med. Sci. 85. 758–771, 2023

769

doi:10.18999/nagjms.85.4.758

Yusuke Yoshida et al

15 Song Z, Insel PS, Buckley S, et al. Brain amyloid-β burden is associated with disruption of intrinsic

functional connectivity within the medial temporal lobe in cognitively normal elderly. J Neurosci.

2015;35(7):3240–3247. doi:10.1523/JNEUROSCI.2092-14.2015.

16 Lim HK, Nebes R, Snitz B, et al. Regional amyloid burden and intrinsic connectivity networks in cognitively

normal elderly subjects. Brain. 2014;137(Pt 12):3327–3338. doi:10.1093/brain/awu271.

17 Moeller JR, Strother SC. A regional covariance approach to the analysis of functional patterns in positron

emission tomographic data. J Cereb Blood Flow Metab. 1991;11(2):A121-A135. doi:10.1038/jcbfm.1991.47.

18 Alexander GE, Moeller JR. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: A principal component approach to modeling brain function in disease. Hum Brain

Mapp. 1994;2(1–2):79–94. doi:10.1002/hbm.460020108.

19 Spetsieris P, Ma Y, Peng S, et al. Identification of disease-related spatial covariance patterns using neuroimaging data. J Vis Exp. 2013;(76):50319. doi:10.3791/50319.

20 Shigemoto Y, Sone D, Ota M, et al. Voxel-based correlation of 18F-THK5351 accumulation and gray

matter volume in the brain of cognitively normal older adults. EJNMMI Res. 2019;9(1):81. doi:10.1186/

s13550-019-0552-3.

21 Mioshi E, Dawson K, Mitchell J, Arnold R, Hodges JR. The Addenbrooke’s Cognitive Examination Revised

(ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry. 2006;21(11):1078–

1085. doi:10.1002/gps.1610.

22 Fazekas F, Kleinert R, Offenbacher H, et al. The morphologic correlate of incidental punctate white matter

hyperintensities on MR images. AJNR Am J Neuroradiol. 1991;12(5):915–921.

23 Verdurand M, Bort G, Tadino V, Bonnefoi F, Le Bars D, Zimmer L. Automated radiosynthesis of the Pittsburg compound-B using a commercial synthesizer. Nucl Med Commun. 2008;29(10):920–926. doi:10.1097/

MNM.0b013e328304e0e1.

24 Hammers A, Allom R, Koepp MJ, et al. Three-dimensional maximum probability atlas of the human

brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–247. doi:10.1002/

hbm.10123.

25 Jack CR Jr, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment

and Alzheimers disease: implications for sequence of pathological events in Alzheimers disease. Brain.

2009;132(Pt 5):1355–1365. doi:10.1093/brain/awp062.

26 Bourgeat P, Chételat G, Villemagne VL, et al. Beta-amyloid burden in the temporal neocortex is related

to hippocampal atrophy in elderly subjects without dementia. Neurology. 2010;74(2):121–127. doi:10.1212/

WNL.0b013e3181c918b5.

27 Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Aβ and cognition in aging and

Alzheimer disease. Ann Neurol. 2011;69(1):181–192. doi:10.1002/ana.22248.

28 Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive

decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–367.

doi:10.1016/S1474-4422(13)70044-9.

29 Niethammer M, Tang CC, Feigin A, et al. A disease-specific metabolic brain network associated with

corticobasal degeneration. Brain. 2014;137(Pt 11):3036–3046. doi:10.1093/brain/awu256.

30 Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject-driven cognitive states with

whole-brain connectivity patterns. Cereb Cortex. 2012;22(1):158–165. doi:10.1093/cercor/bhr099.

31 Bagarinao E, Watanabe H, Maesawa S, et al. Identifying the brain’s connector hubs at the voxel level using

functional connectivity overlap ratio. Neuroimage. 2020;222:117241. doi:10.1016/j.neuroimage.2020.117241.

32 van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci. 2013;17(12):683–696.

doi:10.1016/j.tics.2013.09.012.

33 Bertolero MA, Yeo BTT, D’Esposito M. The modular and integrative functional architecture of the human

brain. Proc Natl Acad Sci U S A. 2015;112(49):E6798-E6807. doi:10.1073/pnas.1510619112.

34 Bertolero MA, Yeo BTT, D’Esposito M. The diverse club. Nat Commun. 2017;8(1):1277. doi:10.1038/

s41467-017-01189-w.

35 Bertolero MA, Yeo BTT, Bassett DS, D’Esposito M. A mechanistic model of connector hubs, modularity

and cognition. Nat Hum Behav. 2018;2(10):765–777. doi:10.1038/s41562-018-0420-6.

36 Jeon S, Kang JM, Seo S, et al. Topographical Heterogeneity of Alzheimer’s Disease Based on MR Imaging,

Tau PET, and Amyloid PET. Front Aging Neurosci. 2019;11:211. doi:10.3389/fnagi.2019.00211.

37 Nam G, Jeong HJ, Kang JM, et al. 18F-THK5351 PET Imaging in the Behavioral Variant of Frontotemporal

Dementia. Dement Neurocogn Disord. 2018;17(4):163–173. doi:10.12779/dnd.2018.17.4.163.

38 Son HJ, Oh JS, Roh JH, et al. Differences in gray and white matter 18F-THK5351 uptake between behavioralvariant frontotemporal dementia and other dementias. Eur J Nucl Med Mol Imaging. 2019;46(2):357–366.

Nagoya J. Med. Sci. 85. 758–771, 2023

770

doi:10.18999/nagjms.85.4.758

Aging network changes in mPFC/putamen

doi:10.1007/s00259-018-4125-x.

39 Yoon CW, Jeong HJ, Seo S, et al. 18F-THK5351 PET Imaging in Nonfluent-Agrammatic Variant Primary

Progressive Aphasia. Dement Neurocogn Disord. 2018;17(3):110–119. doi:10.12779/dnd.2018.17.3.110.

40 Kim HJ, Cho H, Park S, et al. THK5351 and flortaucipir PET with pathological correlation in a CreutzfeldtJakob disease patient: a case report. BMC Neurol. 2019;19(1):211. doi:10.1186/s12883-019-1434-z.

41 Ng KP, Therriault J, Kang MS, et al. Rasagiline, a monoamine oxidase B inhibitor, reduces in vivo [18F]

THK5351 uptake in progressive supranuclear palsy. Neuroimage Clin. 2019;24:102091. doi:10.1016/j.

nicl.2019.102091.

42 Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common pathology

associated with human aging. Acta Neuropathol. 2014;128(6):755–766. doi:10.1007/s00401-014-1349-0.

43 Tong J, Meyer JH, Furukawa Y, et al. Distribution of monoamine oxidase proteins in human brain: Implications for brain imaging studies. J Cereb Blood Flow Metab. 2013;33(6):863–871. doi:10.1038/jcbfm.2013.19.

44 Levitt P, Pintart JE, Breakefieldt XO. Immunocytochemical demonstration of monoamine oxidase B in

brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A. 1982;79(20):6385–6389. doi:10.1073/

pnas.79.20.6385.

45 Ekblom J, Jossan SS, Bergström M, Oreland L, Walum E, Aquilonius SM. Monoamine oxidase-B in

astrocytes. Glia. 1993;8(2):122–132. doi:10.1002/glia.440080208.

46 Lemoine L, Gillberg PG, Svedberg M, et al. Comparative binding properties of the tau PET tracers

THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimers Res Ther. 2017;9(1):96.

doi:10.1186/s13195-017-0325-z.

47 Bagarinao E, Watanabe H, Maesawa S, et al. Reorganization of brain networks and its association with

general cognitive performance over the adult lifespan. Sci Rep. 2019;9(1):11352. doi:10.1038/s41598-01947922-x.

48 Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP. Functional connectivity of default mode

network components: correlation, anticorrelation, and causality. Hum Brain Mapp. 2009;30(2):625–637.

doi:10.1002/hbm.20531.

49 de Haan W, Mott K, van Straaten EC, Scheltens P, Stam CJ. Activity dependent degeneration explains

hub vulnerability in Alzheimer’s disease. PLoS Comput Biol. 2012;8(8):e1002582. doi:10.1371/journal.

pcbi.1002582.

References End

Nagoya J. Med. Sci. 85. 758–771, 2023

771

doi:10.18999/nagjms.85.4.758

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る