リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Morphological and Phylogenetic Studies on the Genetic Diversity and Origin of Philippine Red Junglefowl」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Morphological and Phylogenetic Studies on the Genetic Diversity and Origin of Philippine Red Junglefowl

Compendio Jade Dhapnee Zarate 広島大学

2022.03.23

概要

Red junglefowl (RJF) is an important animal resource domesticated long ago for the use of man in different aspects of life. Current reports suggested that the Gallus gallus spadiceus and not the Gallus gallus gallus is the maternal origin of the domestic chickens based on the 863 genomes sampled worldwide. In the Philippines (PH), RJFs still exist in the forests, however, their subspecific classification is still in question, given that the published results are often inconclusive and at times contradicting. To address this concern, an in-depth molecular study and analysis encompassing the whole Philippine archipelago could help us understand it genetic identity, maternal origin, and diversity, including their ecology. Furthermore, due to identification limitations, the need to use unconventional methods and DNA sources was explored as well. Connecting taxonomic classification and phylogenomic result of this study could help us address the possible conservation of this animal in the Philippines. This will also help us address one of the Sustainable Development Goals of the United Nations.
 
Initial identification of RJFs could serve as a vantage point towards a deeper understanding of this animals. Currently, due to the ambiguous subspecific classification of PH RJFs, the establishment of baseline data based on the morphological characteristics of the RJFs found in the different areas of the Philippines could provide us an initial perspective on the identity of these animals. Thus, evaluation of RJFs through genotyping of phenotypic morphological expressions and morphometric assessment was conducted. This study revealed that there are still RJFs in the Philippines that exhibited the wild-type morphology. Moreover, in comparing the wild-type RJFs from the hybrid RJF, shank color, and eclipse plumage expression in male RJFs appeared to be the most important identification index. In determining the subspecific classification of RJFs, earlobe color, hackle, and mantle in males and females appeared to be the most significant parameters to assess. To bridge the gap between morphology and genetics, the genetic analysis conducted in this study supported the morphological classification of Philippine RJFs under G.g.gallus and G.g.bankiva. Consequently, this research supported the idea that identifying a wild RJF from a hybrid RJF is possible through morphological examination. Furthermore, the observed hybrid RJF in this study is a threat to the genetic diversity and integrity of RJFs.
 
Moreover, taxonomic classification through genotyping and morphometric analysis is not enough to verify the subspecific classification and determine the evolutionary history of the PH RJFs. Thus, phylogenetic analysis utilizing the genomic and matrilineal tracing advantage of mtDNA in addressing the past classification ambiguity of the PH RJFs, as well as evaluate its present ecological diversity status, and its complex evolutionary relationship with the RJFs in Asia was conducted. To address these concerns, we analyzed the mtDNA of the PH RJFs that were collected from the different mountainous areas in the Philippines. This study revealed that the Philippine RJFs analyzed were classified under haplogroups D, Y, and E. The result revealed multiple maternal origin of the PH RJFs, possibly from China and Indonesia. The haplotype sharing of the investigated RJFs with the domestic chickens of Laos, China, and India also showed prevalence of domestic chicken gene introgressed RJFs in the Philippines. It was also observed that two Gallus gallus subspecies were present in the Philippines, the G.g.gallus and G.g. bankiva, thus confirming the morphological analysis result of this research. The genetic analysis also revealed high genetic and nucleotide diversity, and population expansion of the PH RJFs. Moreover, considering the close genetic relationship of RJFs from the Philippines and Indonesia as revealed in this study, the need to conduct phylogenetic analysis comprising the RJFs from these two countries could help us understand their complex evolutionary relationship.
 
Initial phylogenetic analysis suggested that the RJFs in the Philippines shared the same haplogroup and haplotype with a G.g.bankiva RJF from Indonesia. However, to further clarify the phylogenetic relationship of the RJFs from the Philippines and Indonesia, a phylogenetic and divergence time analysis was conducted. The results revealed that the Indonesian RJFs were solely classified under haplogroup D, in contrast to the haplogroups D, Y, and E classification of the PHRJFs. Moreover, Indonesian RJFs only shared the same haplotype with a G.g.bankiva from Indonesia, aside from the domestic chickens from Laos and China. Furthermore, both the Philippine and Indonesian RJFs shared the same haplotype, thus, supporting common maternal ancestry. The coalescent divergence time analysis of this study also supported the close genetic relationship of the RJFs from these two countries. The divergence analysis of this study also suggested that the RJFs from the Philippines diverge first from least most common RJF ancestor than the Indonesian RJFs.
 
Philippines is one of the most biodiverse countries globally, which forms a global hotspot of species diversity, including RJFs. The collective result of this study reported continued existence of RJFs in the wild. However, the haplotype sharing of the Philippine RJFs with domestic and commercial chickens observed in this study is of biodiversity concern. This could mean genetic admixture of the wild and domestic chicken population, thereby jeopardizing the genetic integrity of the RJFs. Translating the result of this study in addressing global concerns, this study suggested that conservation consideration based on the phylogenomics must be incorporated for a more structured conservation and endangerment classification to address the SDG 15: Life on land.
 
In conclusion, this study revealed that differentiation of wild RJFs from RJFs introgressed with domestic chicken gene is possible through qualitative and quantitative morphological assessment. However, though the diversity and ecological status of Philippine RJFs through morphological assessment could be used as an initial evaluation approach, the need to conduct DNA analysis could provide us a better understanding of its the taxonomic classification, biodiversity status, and its evolutionary history. This study also highlighted the genomic advantage of mtDNA in determining the matrilineal ancestry, phylogenetic diversity, and endemism of the Philippine RJFs. mtDNA also highlighted the areas that can be targeted for protection and be given priority in any planning process for improved biodiversity conservation, leading to the sustainability of life on land.

参考文献

Adebambo, A.O., Mobegi, V.A., Mwacharo, J.M., Oladejo ,B.M., Adewale, R.A., Ilori, L.O., Makanjuola, B.O., Afolayan, O., Bjonstand, G., Jianlin, H., and Hannotte O. (2010). Lack of phylogeographic structure in Nigerian village chickens as revealed by mitochondrial DNA D-loop sequence analysis. International Journal of Poultry Science, 9: 503-507.

Ali, S., and Ripley, S.D. (1989). The compact handbook of the birds of India and Pakistan. Oxford University Press, Bombay, India.

Avise, J.C. (2000). Phylogeography: the history and formation of species. Cambridge: Harvard University Press.

Avise, J.C., Arnold, J., Ball, R.M., Eldredge, B., Lamb, T., Neigel, J.E., Reeb, C.A., and Saunders, N.C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18: 489-522.

Baker, E.C.S. (1928). The fauna of British India, including Ceylon and Burma. London. Taylor and Francis.

Ballard, J.W.O., and Whitlock, M.C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13: 729-744.

Ballard, J.W., and Rand, D.M. (2005). The population biology of mitochondrial DNA and its phylogenetic implications. Annual Review of Ecology, Evolution, and Systematics, 36: 621-642.

Beebe, W. (1926). A monograph of the pheasants, volume 2. Dover Publications, New York

Bekerie, E.M., Goraga, Z.S., Johansson, A.M., and Singh, H. (2015). Genetic diversity and population structure of four indigenous chicken ecotypes representing South and Southwestern Ethiopia. International Journal of Genetics, 5: 18-24.

Bellwood, P. (1984). A hypothesis for Austronesian origins. Asian Perspectives. pp. 107-117.

BirdLife International. (2016). Gallus gallus. The IUCN Red List of Threatened Species. http://www.birdlife.org. BirdLife International. (2021). Species factsheet: Gallus gallus. http://www.birdlife.org.

Birky, Jr., C.W. (2001). The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annual Review of Genetics, 35: 125-148.

Bondoc, O.L. (2008). Biodiversity of livestock and poultry genetic resources in the Philippines. Los Banos, Laguna: IAS-CAlUPLB andPCARRD/DOST, 1998. 141p.

Bondoc, O.L. (2013). DNA barcoding of red jungle fowls (Gallus gallus philippensis Hatchisuka) from different mountains areas in the Philippines. Journal of Environmental Science and Management, 16: 1-10.

Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchene, S., Fourment, M., Gavryushkina, A., Heled,J., Jones, G., Kuhnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Muller, N.F., Ogilvie HA., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.H., Xie, D., Zhang, C., Stadler, T., and Drummond, A.J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15: 1-28.

Brisbin, I.L., and Peterson, A.T. (2007). Playing chicken with red junglefowl: identifying phenotypic markers of genetic purity in Gallus gallus. Animal Conservation, 10; 429-435.

Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C. (1982). Mitochondrial DNA sequences of primates: tempo and mode of evolution. Journal of Molecular Evolution, 18: 225-239.

Buctot, F.F. (2016). Comparative study on the breeding performance of red jungle fowl versus native roosters under confinement system. Journal of Science, Engineering and Technology, 4: 29-34.

Buctot, F.F., and Espina, D.M. (2015). Breeding performance and egg quality of red jungle fowl (Gallus gallus L.) under confinement system. Journal of Science, Engineering and Technology, 3: 65-75.

Bump, G. (1961). Field report of foreign game introduction program activities. Report 9. Branch of Wildlife Research, Bureau of Sport Fisheries and Wildlife. Washington D.C.

Cabarles, J.C.J., Lambio, A.L., Vega, R.S.A., Capitan, S.S., and Mendioro, M.S. (2012). Distinct morphological features of traditional chickens (Gallus gallus domesticus L) in Western Visayas, Philippines. Animal Genetic Resources, 51: 73-87.

Callaway, E. (2016). When chickens go wild. Nature, 529: 270-273.

Ceccobelli, S., Di Lorenzo, P., Lancioni, H., Castellini, C., Monteagudo Ibáñez, L.V., Sabbioni A, Sarti FM, Weigend S., and Lasagna E. (2013). Phylogeny, genetic relationships and population structure of five Italian local chicken breeds. Italian Journal of Animal Science, 12: 410-417.

Coates, D. J., Byrne, M., and Moritz, C. (2018). Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Frontiers in Ecology and Evolution, 6: 1-13.

Compendio, J.D.Z., and Nishibori, M. (2021). Philippine red junglefowl: a separate Gallus gallus subspecies or not? The Journal of Animal Genetics, 49: 41-47.

Condon, T. (2012). Morphological detection of genetic introgression in red junglefowl (Gallus gallus). Electronic Theses and Dissertations. 762.

Craig, M., and Cicero, C. (2004). DNA barcoding: promise and pitfalls. PLoS Biology, 2: 1657-1663.

Crawford, R.D. (1990). Poultry biology: origin and history of poultry species. in: poultry breeding and genetics. Elsevier Science Publishing Company. Amsterdam and New York.

Cuc, N.T.K., Simianer, H., Groeneveld, L.F., and Weighend, S. (2011). Multiple maternal lineages of Vietnamese local chickens inferred by mitochondrial Dloop sequences. Asian-Australian Journal of Animal Sciences, 24: 155-161.

Darwin, C. (1868). The variation of animals and plants under domestication. Cambridge University Press, Cambridge, United Kingdom.

del Hoyo, J., Elliott, A., and Sargatal, J. (2001). Handbook of the birds of the world. Vol. 2, New World Vultures to Guinea fowl. Lynx Editions, Barcelona.

Delacour, J. (1947). Birds of Malaysia. The MacMillan Company, New York.

Delacour, J. (1951). The pheasants of the world. Country Life Ltd, London.

Delacour, J. (1977). The pheasants of the world, 2nd edition. World Pheasant Association and Spur Publications, Hindhead, U.K.

Desjardins, P., and Morais, R. (1990). Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. Journal of Molecular Biology, 4: 599-634.

Desta, T.T. (2019). Phenotypic characteristic of junglefowl and chicken. World's Poultry Science Journal, 75: 69-82.

Desta, T.T., Dessie, T., Bettridge, J., Lynch, S.E., Melese, K., Collins, M., Christley, R.M., Wigley, P., Kaiser, P., Gutu, Z., Mwacharo, J.M., and Hanotte, O. (2013). Signature of artificial selection and ecological landscape on morphological structures of Ethiopian village chickens. Animal Genetic Resources, 52: 17-29.

Drummond, A.J., Rambaut, A., Shapiro, B., and Pybus, O.G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22: 1185-1192.

Duguma, R. (2006). Phenotypic characterization of some indigenous chicken ecotypes of Ethiopia. Livestock Research for Rural Development, 18: 1-10.

Eo S.H., and De Woody, J.A. (2010). Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proceedings of the Royal Society B: Biological Sciences, 277: 3587-3592.

Eriksson, J., Larsen, G., Gunnarsson, U., Bed’hom, B., Tixier-Boichard, M., Strömstedt, L., Wright, D., Jungerius, A., Vereijken, A., Randi, E., Jensen, P., and Andersson, L. (2008). Identification of the yellow skin gene reveals the hybrid origin of domestic fowl. PLoS Genetics, 4: 1-8.

Excoffier, L., and Lischer, H.E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analysis under Linux and Windows. Molecular Ecology Resources, 10: 564-567.

Excoffier, L., Smouse, P.E., and Quattro, J.M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 131: 479-491.

FAO. (2007). The global plan of action for animal genetic resources and the Interlaken declaration on animal genetic resources. International Conference on animal genetic resources for food and Agriculture. Interlaken, Switzerland.

FAO. (2012). Phenotypic characterization of animal genetic resources. FAO Animal production and animal health guidelines No. 11. Rome.

Fernandes, M., Sathyakumar, S., Kaul, R., Kalsi, R. S., and Sharma, D. (2007). Conservation of red junglefowl Gallus gallus in India. International Journal of Galliformes Conservation, 1: 94-101.

Forest Management Bureau. (2004). Philippine forestry statistics. Forest Management Bureau, Department of Environment and Natural Resources, Quezon City, Philippines.

Francia, L.H. (2013). History of the Philippines: from indios bravos to Filipino. The Overlook Press, 368p.

Froman, D.P., Kirby, J.D. Sperm mobility: phenotype in roosters (Gallus domesticus) determined by mitochondrial function. Biology of Reproduction, 72:562-567. 2005.

Fu, Y.X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147: 915-925.

Fu, Y.X., and Li, W.H. (1993). Statistical tests on neutrality of mutations. Genetics, 133: 693-709.

Fumihito, A., Miyake, T., Sumi, S., Takada, M., Ohno, S., and Kondo., N. (1994). One subspecies of the red jungle fowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences of the United States of America, 91: 12505- 12509.

Fumihito, A., Miyake, T., Takada, M., Shingu, R., Endo, T., Gojobori, T., Kondo, N., and Ohno, S. (1996). Monophyletic origin and unique dispersal patterns of domestic fowls. Proceedings of the National Academy of Sciences of the United States of America, 93; 6792 - 6795.

Galtier, N., Nabholz. B., Glémin, S., and Hurst, G.D.D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18: 4541-4550.

Gilliard, E.T. (1950). Notes on a collection of birds from Bataan, Luzon, Philippine islands. Bulletin of American Museum of Natural History, 94: 457-504.

Gissi, C., Iannelli, F., and Pesole, G. (2008) Evolution of the mitochondrial genome of metazoa as exemplified by comparison of congeneric species. Heredity, 101: 301-320.

Godinez, C.J.P., Nishibori, M., Matsunaga, M., and Espina, D.M. (2019). Phylogenetic studies on red jungle fowl (Gallus gallus) and native chicken (Gallus gallus domesticus) in Samar Island, Philippines using the mitochondrial DNA D-loop region. Journal of Poultry Science, 56: 237-244.

Godinez, C.J.P., Dadios ,P.J.D., Espina, D.M., Matsunaga, M., and Nishibori, M. (2021). Population genetic structure and contribution of Philippine chickens to the Pacific chicken diversity inferred from mitochondrial DNA. Frontiers in Genetics, 22: 1185-1192.

Green M,R., and Sambrook, J. (2012). Molecular cloning: A Laboratory Manual, 4th ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY, USA.

Groeneveld, L.F., Lenstra, J.A., Eding, H., Toro, M.A., Scherf, B., Pilling, D., Negrini, R., Finlay, E.K., Jianlin, H., Groeneveld, E., Weigend, S., and The GLOBALDIV Consortium (2010). Genetic diversity in farm animals-a review. Animal Genetics, 41: 6-31.

Hachisuka, M. (1939). The red jungle fowl from the Pacific islands. Japanese Journal of Ornithology, 10: 596-601.

Hanh, N.H., Han, J., and Silva, P. (2015). Morphological characteristics and growth performance of F1 hybrids of red junglefowl cocks crossed with Fayoumi or H'mong hens. Tropical Agricultural Research, 26: 655-665.

Hasegawa, M., and Adachi, J. (1996). Phylogenetic position of cetaceans relative to artiodactyls: reanalysis of mitochondrial and nuclear sequences. Molecular Biology and Evolution, 13: 710-717.

Hata, A., Nunome, M., Suwanasopee, T., Duengkae, P., Chaiwatana, S., Chamchumroon, W., Suzuki, T., Koonawootrittriron, S., Matsuda, Y., and Srikulnath, K. (2021). Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens. Scientific Reports, 11: 1-15.

Hayashi, Y., Nishida, T., Fujioka, T., Tsugiyama, I., and Mochizuki, K. (1985). Osteometrical studies on the phylogenetic relationships of Japanese native fowls. Japanese Journal of Veterinary Science, 47: 25-37.

Heaney, L. R. (1993). Biodiversity patterns and the conservation of mammals in the Philippines. Asia Life Science, 2: 261-274.

Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2: 1657-1663.

Hillel, J., Groenen, M.A., Tixier-Boichard, M., Korol, A.B., David, L., Kirzhner, V.M., Burke, T., Barre-Dirie, A., Crooijmans, R.P., Elo, K., Feldman, M.W., Freidlin, P.J., Maki-Tanila, A., Oortwijn, M., Thomson, P., Vignal, A., Wimmers, K., and Weigend, S. (2003). Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genetics Selection Evolution, 35: 533-557.

Hung, H. (2016). The formation and dispersal of early Austronesian- speaking populations: new evidence from Taiwan, the Philippines, and the Marianas of western Micronesia. Austronesian Diaspora: A new perspective. Gadjah Mada University Press. ISBN 978-602-386-202-3

Hutt, F.B. (1949). Genetics of the Fowl: The classic guide to poultry breeding and chicken genetics. Norton Creek press. ISBN:0-9721770-3-5.

Islam, M.A., and Nishibori, M. (2012). Phylogenetic analysis of native chicken from Bangladesh and neighboring Asian countries based on complete sequence of mitochondrial DNA D-loop region. Journal of Poultry Science, 49: 237-244.

Johnsgard, P.A. (1986). The pheasants of the world. Oxford University Press, New York.

Johnsgard, P.A. (1999). The pheasants of the world; biology and natural history, 2nd edn. Smithsonian Institution Press, Washington, D.C.

Joshi, J., Salar, R.K., Banerjee, P., Upasna, S., Tantia, M.S., and Vijh, R.K. (2013). Genetic variation and phylogenetic relationships of indian buffaloes of Uttar Pradesh. Asian-Australasian Journal of Animal Sciences, 26: 1229-1236.

Kaila, O.P., Sankhyan, V., Reen, J.K., Vijh, R.K., and Thakur, Y.P. (2015). Biometry, production potentials and genetic charaterterization of red jungle fowl (Gallus gallus) reared under captivity from western Himalayan state of Himachal Pradesh, India. Indian Journal of Animal Research, 51: 406-410.

Kanginakudru, S., Metta, M., Jakati, R.D., and Nagaraju, J. (2008). Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evolutionary Biology, 8:174.

Kaul, R., Shah, J.S., and Chakrabarty, B. (2004). An assessment of important physical traits shown by some captive red junglefowl in India. Current Science, 87: 1498-1499.

Kawabe, K., Worawut, R., and Taura, S. (2014) Genetic diversity of mtDNA Dloop polymorphisms in Laotian native fowl populations. Asian-Australas Journal of Animal Science, 27:19-23.

Kerr, K.C.R. (2011). Searching for evidence of selection in avian DNA barcodes. Molecular Ecology Resources, 11: 1045-1055.

Kimball, E. (1958). Eclipse plumage in Gallus. Poultry Science, 37: 733-734

Kittelberger, K. D., Neate-Clegg, M. H. C., Blount, J. D., Posa, M. R. C., McLaughlin, J., and Şekercioğlu, Ç. H. (2021). Biological correlates of extinction risk in resident Philippine avifauna. Frontiers in Ecology and Evolution, 9: 1-13.

Kumar, S., Stecher, G., and Tamura, K. (2015). MEGA7: Molecular evolutionary genetics analysis version 7.0. Molecular Biology and Evolution.

Kumar, S., Stecher, G., Li. M., Knyaz. C., and Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35:1547-1549.

Lambio, A.L., and Gay, E.C. (1993). The indigenous chickens of the Philippines. Animal Production Technology Journal, 8: 8-9.

Lawal, R.A., Martin, S.H., Vanmechelen, K., Vereijken, A., Silva, P., Al-Atiyat, R.M., Aljumaah, R.S., Mwacharo, J.M., Wu, D.D., Zhang ,Y.P., Hocking, P.M., Smith, J., Wragg, D., and Hanotte, O. (2020). The wild species genome ancestry of domestic chickens. BMC Biology, 18: 1-18.

Liu, Y.P., Wu, G.S., Yao, Y.G., Miao, Y.W., Luikart, G., Baig, M., Beja-Pereira, A., Ding, Z.L., Palanichamy, M.G., and Zhang, Y.P. (2006). Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics and Evolution, 38: 12-19.

Liyanage, R.P., Dematawewa, C,M,B., and Silva, G.L.L.P. (2015). Comparative study on morphological and morphometric features of village chickens in Sri Lanka. Tropical Agricultural Research, 26 : 261-273.

Lopes, C.I., and Lama, D. (2007). Genetic diversity and evidence of recent demographic expansion in waterbird populations from the Brazilian Pantanal. Brazilian Journal of Biology, 67: 849-857.

Lowe, A, Harris, S., and Ashton, P. (2004). Ecological genetics: design, analysis, and application. Blackwell Publishing. Malden, MA, USA.

Luo, W., Xu, J., Li, Z., Xu, H., Lin, S., Wang, J., Ouyang, H., Nie, Q., and Zhang, X. (2018). Genome-wide association study and transcriptome analysis provide new insights into the white/red earlobe color formation in chicken. Cell Physiology Biochemistry, 46: 1768-1778.

Madoc, G.C. (1956). An introduction of Malayan birds. Malayan Nature Society Kuala Lumpur. pp51-52.

Masangkay, J.S., Mannen, H., Namikawa, T., Yamamoto, Y., and Alviola, P. (2010). The Philippine red jungle fowl. Animal Scene, 10: 40- 48. 127

Mayr, E. (1963). Animal species and evolution. Cambridge, MA: The Belknap Press of Harvard University Press.

Miao, Y.W., Peng, M.S., Wu, G.S., Ouyang, Y.N., Yang, Z.Y., Yu, N., Liang, J.P., Pianchou, G., Beja-Pereira, A., Mitra, B., Palanichamy, M.G., Baig, M., Chaudhuri, T.K., Shen, Y.Y., Kong, Q.P., Murphy, R.W., Yao, Y.G., and Zhang, Y.P. (2013). Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 110: 277-282.

Milligan, B.G., Leebens-Mack, J., and Strand, A.E. (1994). Conservation genetics: beyond the maintenance of marker diversity. Molecular Ecology, 3: 423-435.

Miyake, T. (1997). Gallus gallus mitochondrial DNA for D-loop region. Published only in database.

Morejohn, G.V. (1955). Plumage color allelism in the red junglefowl and related domestic forms. Genetics, 40: 519 -530.

Morejohn, G.V. (1968). Study of plumage of the four species of the genus Gallus. The Condor, 70: 56-65.

Muchadeyi, F.C., Eding, H., Simianer, H., Wollny, C.B.A., Groeneveld E., and Weigend, S. (2008). Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens. Animal Genetics, 39: 615-622.

Mundy, N.I. (2006). Genetic basis of color variation in wild birds. Bird coloration, 1: 469-506.

Mwacharo, J.M., Bjørnstad, G., Mobegi, V., Nomura, K., Hanada, H., Amano, T., Jianlin, H., and Hanotte, O. (2011). Mitochondrial DNA reveals multiple introductions of domestic chickens in East Africa. Molecular Phylogenetics and Evolution, 58: 374-382.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853- 858.

National Statistical Coordination Board (NSCB). (2007). Statistics. http://www.nscb.gov.ph/panguna.asp.

Nei, M., and Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press, New York, NY.

Nishibori, M., Hayashi, T., Tsudzuki, M., Yamamoto, Y., and Yasue, H. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Animal Genetics, 32:380-385.

Nishibori, M., Shimogiri, T., Hayashi, T., and Yasue, H. (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Animal Genetics, 36: 367-375.

Nishibori, M., Yasue, H., Tsudzuki, M., Yamamoto, Y., Nozawa, K., Kurosawa, Y., Phouthavongs, K., Mannen, H., Kuroiwa, A., Okada, Y., Bouahom, B., and Namikawa, T. (2002). Phylogenetic analysis of Laos and its neighbors native chickens and red junglefowls based on mitochondrial DNA variations. Report of the Society for Researches on Native Livestock, 20: 25-34.

Nishida, T., and Masangkay, J.S. (1978). Ecology of the Philippine jungle fowl. Report of the Society for Researches on Native Livestock, 8: 88-92.

Nishida, T., Nozawa, K., Hashiguchi, T., Namikawa, T., and Nishida J. (1978). Genetical studies on the native fowl and the jungle fowl in the Philippines. Report of the Society for Researches on Native Livestock, 8: 104-114.

Nishida, T., Hayashi, Y., Hachiguchi, T., and Mansjoer S. (1985). Morphological identification and distribution of jungle fowls in Indonesia. Nihon Chikusan Gakkaiho, 56: 598-610.

Nishida, T., Rerkamnuaychoke, W., Tung, D.G., Saignaleus, S., Okamoto, S., Kawamoto, Y., Kimura, J., Kawabe, K., Tsunekawa, N., Otaka, H., and Hayashi, Y. (2000). Morphological identification and ecology of the red jungle fowl in Thailand, Laos and Vietnam. Nihon Chikusan Gakkaiho, 71: 470-480 .

Niu, D., Fu, Y., Luo, J., Ruan, H., Yu, X.P., Chen, G., and Zhang, Y.P. (2002). The origin and genetic diversity of Chinese native chicken breeds. Biochemical Genetics, 40: 163-174.

Oka, T., Ino, Y., Nomura, K., Kawashima. S., Kuwayama, T., Hanada, H., Amano, T., Takada, M., Takahata, N., Hayashi, Y., and Fumihito, A. (2007). Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Animal Genetics, 38: 287-293.

Okello, J.B.A., Nyakana, S., Masembe, C., Siegismund, H.R., and Arctander, P. (2005). Mitochondrial DNA variation of the common hippopotamus: evidence for a recent population expansion. Heredity, 95: 206-215.

Oliver, W. L. R., and Heaney, L. R. (1996). Biodiversity and conservation in the Philippines. International Zoo News, 43: 329-337.

Osman, S.A.M., and Nishibori M. (2014). Phylogenetic analysis of South East Asian countries chickens based on mitochondrial DNA variations. Journal of Poultry Science, 51: 248-261.

Parkes, K.C. (1962). The red junglefowl of the Philippines: native or introduced? Auk Ornithological Advances, 79: 479-481.

Peterson, A.T., and Brisbin IL. (1998). Genetic endangerment of red junglefowl Gallus gallus? Bird Conservation International, 8: 387- 394.

Peterson, A.T., and Brisbin, I.L. Jr. (2005). Phenotypic status of red junglefowl Gallus gallus populations introduced on Pacific islands. Bulletin of the British Ornithologist’s Club, 125: 59-61.

Posa, M. R. C., Diesmos, A. C., Sodhi, N. S., and Brooks, T. M. (2008). Hope for threatened tropical biodiversity: lessons from the Philippines. BioScience, 58: 231-240.

Posada, D., and Buckley, T.R. (2004). Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology, 53: 793-808.

Rabor, D.S., Rand, A.L. (1958). Jungle and domestic fowl, Gallus gallus, in the Philippines. The Condor, 60: 138-139.

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., and Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67: 901-904.

Ramadan, H.A.I., Galal, A., Fathi, M.M., El Fiky, S.A., and Yakoub, H.A. (2011). Characterization of two Egyptian native chicken breeds using genetic and immunological parameters. Biotechnology in Animal Husbandry, 27: 1-16.

Rand, A.L., and Rabor, D.S. (1960). Birds of the Philippine islands: Siquijor, Mount Malindang, Bohol, and Samar. Fieldiana Zoology, 35:7.

Razafindraibe, H., Mobegi, V.A., Ommeh, S.C., Rakotondravao, J., Bjørnstad, G., Hanotte, O., and Jianlin, H. (2008). Mitochondrial DNA origin of indigenous Malagasy chicken: implications for a functional polymorphism at the Mx gene. Annals of the New York Academy of Sciences, 1149: 77-79.

Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., and Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496-2497.

Salces, A.J., Yebron, M.G.Jr., Salces, C., and Dominguez, J.M. (2015). Phenotypic and genetic characteristics of boholano genetic group of philippine native chicken (Gallus gallus domesticus, L.) Philippine Journal of Veterinary and Animal Sciences, 41: 1-11.

Sawai, H., Kim, H.L., Kuno, K., Suzuki, S., Gotoh, H., Takada, M., Takahata, N., Satta, Y., and Fumihito, A. (2010). The origin and genetic variation of domestic chickens with special reference to jungle fowls Gallus g. gallus and G. varius. PLoS ONE, 5: 1-11.

Sharma, M., Fomda, BA., Mazta, S., Sehgal, R., Singh, B.B., and Malla N. (2013). Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature. PLoS ONE, 8: 1-8.

Shoubridge, E.A., and Wai, T. (2007). Mitochondrial DNA and the mammalian oocyte. Current Topics in Developmental Biology, 77: 87-111.

Simanjuntak, T. (2017). The Western Route Migration: A Second Probable Neolithic Diffusion to Indonesia. Text taken from Piper, P.J., Matsumura, H., and Bulbeck, D. 2017. Perspectives in Southeast Asian and Pacific Prehistory. NU Press, The Australian National University, Canberra, Australia.

Stattersfield, A. J., Crosby, M. J., Long, M. J., and Wege, D.C. (1998). Endemic bird areas of the world: priorities for biodiversity conservation. Cambridge, UK: BirdLife International. 846p.

Stoeckle, M. (2003). Taxonomy, DNA and the bar code of life. BioScience, 53: 1- 2.

Stoltzfus, A., and Norris, R.W. (2016). On the causes of evolutionary transition:transversion bias. Molecular Biology and Evolution, 33: 595-602.

Sulandari, S.R.I., Zein, M.S.A., and Sartika, T. (2008). Molecular characterization of Indonesian indigenous chickens based on mitochondrial DNA displacement (D)-loop sequences. HAYATI Journal of Biosciences, 15:145- 154.

Syahar, A.A.G., Zakaria, M.H., Zuki, A.B.Z., Lokman, H.I., and Mazlina, M. (2014). The existence of red jungle fowl (Gallus gallus) in oil palm plantations in selected states in Malaysia and their morphological characteristics. Journal of Veterinary Malaysia, 26:38-40.

Tajima, F. (1993). Statistical analysis of DNA polymorphism. Japanese Journal of Genetics, 68: 1567-1595.

Tajima, F. (1996). The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics, 143: 1457-1465.

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution. 10: 512-526.

Tan-Cullamar, E. (1993). The Indonesian diaspora and Philippine-Indonesian Relations. Philippine Studies, 41: 38-50.

Thomson, V.A., Lebrasseur, O., Austin, J.J., Hunt, T.L., Burney, D.A., Denham, T., Rawlence, N.J., Wood, J.R., Gongora, J., Flink, L.G., Linderholm, A., Dobney K, Larson, G., and Cooper, A. (2014). Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proceedings of the National Academy of Sciences of the United States of America, 111: 4826- 4831.

Tong, X.M., Liang, Y., Wang, W., Xu, S.Q., Zheng, X.G., Wang, J., and Yu, J. Complete sequence and gene organization of the Tibetan chicken mitochondrial genome. Hereditas, 28:769-777. 2006.

Toro, M. A., and Caballero, A. (2005). Characterization and conservation of genetic diversity in subdivided populations. Royal Society, 360: 1367-1378.

Ulfah, M., Kawahara-Miki, R., Farajalllah, A., Muladno, M., Dorshorst, B., Martin, A., and Kono T. (2016). Genetic features of red and green junglefowls and relationship with Indonesian native chickens Sumatera and Kedu Hitam. BMC Genomics, 17: 1-9.

Vijh, R.K., Kumar, S.B., Mishra, B., Sood, S., Ratan, S., and Tantia, M.S. (2009). Physical and genetic attributes of red jungle fowl. Indian Journal of Animal Sciences, 79: 406-410.

Wada, Y., Yamada, Y., Nishibori, M., and Yasue, H. Complete nucleotide sequence of mitochondrial genome in silkie fowl (Gallus gallus var. domesticus). Journal of Poultry Science, 41:76-82. 2004

Wang, M.S., Thakur, M., Peng, M.S., Jiang, Y., Frantz, L.A.F., Li, M., Zhang, J.J., Wang, S., Peters, J., Otecko, N.O., Suwannapoom, C., Guo, X., Zheng, Z.Q., Esmailizadeh, A., Hirimuthugoda, N.Y., Ashari, H., Suladari, S., Zein, M.S.A., Kusza, S., Sohrabi, S., Kharrati-Koopaee, H., Shen, Q.K., Zeng, L., Yang, M.M., Wu, Y.J., Yang, X.Y., Lu, X.M., Jia, X.Z., Nie, Q.H., Lamont, S.J., Lasagna, E., Ceccobelli, S., Gunwardana, H.G.T.N., Senasige, T.M., Feng, S.H., Si, J.F., Zhang, H., Jin, J.Q., Li, M.L., Liu, Y.H., Chen, H.M., Ma, C., Dai, S.S., Bhuiyan, A.K.F.H., Khan, M.S., Silva, G.L.L.P., Le, T.T., Mwai, O.A., Ibrahim, M.N.M., Supple, M., Shapiro, B., Hanotte, O., Zhang, G., Larson, G., Han, J.L., Wu, D.D., and Zhang, YP. (2020). 863 genomes reveal the origin and domestication of chicken. Cell Research, 30: 693-701.

Wells, D.R. (1999). The Birds of the Thai-Malay peninsula. Academic Press. London, 2: 11-12.

West, B., and Zhou, B. (1989). Did chickens go north? New evidence for domestication. World Poultry Science Journal, 45: 205-216.

Xiang, H., Gao, J., Yu, B., Zhou, H., Cai, D., Zhang, Y., Chen, X., Wang, X., Hofreiter, M., and Zhao, X. (2014). Early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 111: 17564- 17569.

Yebron, M.G.N., Salces, A.J., and Dominguez, J.M.D. (2016). Genetic variation and relationships among visayan native chicken genetic groups boholano and darag (Gallus gallus L.) Philippine Journal of Veterinary and Animal Science, 42: 8-15.

Zeuner, F.E. (1963). A history of domesticated animals. Harper and Row, New York and Evanston. pp443-455.

Zhang, L., Zhang, P., Li, Q., Gaur, U., Liu, Y., Zhu, Q., Zhao, X., Wang, Y., Yin, H., Hu, Y., Liu, A., and Li, D. (2017). Genetic evidence from mitochondrial DNA corroborates the origin of Tibetan chickens. PLoS ONE, 12: 1-11.

Zink, R.M., Rising, J.D., Mockford, S., Horn, A.G., Wright , J.M., Leonard, M., and Westberg, M.C. (2005). Mitochondrial DNA variation, species limits, and rapid evolution of plumage coloration and size in the savannah sparrow. The Condor, 107: 21-28. 132

Zink, R.M., and Barrowclough, G.F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17: 2107-2121.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る