リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Unusual nuclear exchange within a germanium-containing aromatic ring that results in germanium atom transfer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Unusual nuclear exchange within a germanium-containing aromatic ring that results in germanium atom transfer

Nishino, Ryohei Tokitoh, Norihiro Sasayama, Ryuto Waterman, Rory Mizuhata, Yoshiyuki 京都大学 DOI:10.1038/s41467-023-40188-y

2023.07.28

概要

The delivery of single atoms is highly desirable for the straightforward synthesis of complex molecules, however this approach is limited by a lack of suitable atomic transfer reagents. Here, we report a germanium atom transfer reaction employing a germanium analogue of the phenyl anion. The reaction yields a germanium-substituted benzene, along with a germanium atom which can be transferred to other chemical species. The transfer of atomic germanium is demonstrated by the formation of well-defined germanium doped molecules. Furthermore, computational studies reveal that the reaction mechanism proceeds via the first example of an aromatic-to-aromatic nuclear germanium replacement reaction on the germabenzene ring. This unusual reaction pathway was further probed by the reaction of our aromatic germanium anion with a molecular silicon species, which selectively yielded the corresponding silicon-substituted benzene derivative.

この論文で使われている画像

参考文献

1.

2.

Frenking, G. et al. New bonding modes of carbon and heavier group

14 atoms Si-Pb. Chem. Soc. Rev. 43, 5106–5139 (2014).

Frenking, G., Hermann, M., Andrada, D. M. & Holzmann, N. Donoracceptor bonding in novel low-coordinated compounds of boron

and group-14 atoms C-Sn. Chem. Soc. Rev. 45, 1129–1144 (2016).

Nature Communications | (2023)14:4519

21.

22.

23.

24.

25.

Yao, S., Xiong, Y. & Driess, M. A new area in main-group chemistry:

zerovalent monoatomic silicon compounds and their analogues.

Acc. Chem. Res. 50, 2026–2037 (2017).

Zhao, L. L., Hermann, M., Holzmann, N. & Frenking, G. Dative

bonding in main group compounds. Coord. Chem. Rev. 344,

163–204 (2017).

Majhi, P. K. & Sasamori, T. Tetrylones: an intriguing class of

monoatomic zero-valent group 14 compounds. Chem. Eur. J. 24,

9441–9455 (2018).

Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118,

9678–9842 (2018).

Yao, S., Xiong, Y., Saddington, A. & Driess, M. Entering new chemical space with isolable complexes of single, zero-valent silicon

and germanium atoms. Chem. Commun. 57, 10139–10153 (2021).

Wang, Y. et al. A stable silicon(0) compound with a Si=Si double

bond. Science 321, 1069–1071 (2008).

Wang, Y. & Robinson, G. H. Carbene-stabilized main group diatomic

allotropes. Dalton Trans. 41, 337–345 (2012).

Wang, Y. & Robinson, G. H. N-Heterocyclic carbene-main-group

chemistry: a rapidly evolving field. Inorg. Chem. 53,

11815–11832 (2014).

Doddi, A., Peters, M. & Tamm, M. N-Heterocyclic carbene adducts

of main group elements and their use as ligands in transition metal

chemistry. Chem. Rev. 119, 6994–7112 (2019).

Frenking, G. Dative bonds in main-group compounds: a case for

more arrows! Angew. Chem. Int. Ed. 53, 6040–6046 (2014).

Himmel, D., Krossing, I. & Schnepf, A. Dative bonds in main-group

compounds: a case for fewer arrows! Angew. Chem. Int. Ed. 53,

370–374 (2014).

Himmel, D., Krossing, I. & Schnepf, A. Dative or not dative? Angew.

Chem. Int. Ed. 53, 6047–6048 (2014).

Krebs, K. M. et al. Phosphine-stabilized digermavinylidene. J. Am.

Chem. Soc. 141, 3424–3429 (2019).

Wilhelm, C., Raiser, D., Schubert, H., Sindlinger, C. P. & Wesemann,

L. Phosphine-stabilized germasilenylidene: source for a siliconatom transfer. Inorg. Chem. 60, 9268–9272 (2021).

Wang, Y. et al. Carbene-stabilized disilicon as a silicon-transfer

agent: synthesis of a dianionic silicon tris(dithiolene) complex.

Angew. Chem. Int. Ed. 59, 8864–8867 (2020).

Koike, T., Nukazawa, T. & Iwamoto, T. Conformationally switchable

silylone: electron redistribution accompanied by ligand reorientation around a monatomic silicon. J. Am. Chem. Soc. 143,

14332–14341 (2021).

Chen, M., Zhang, Z., Qiao, Z., Zhao, L. & Mo, Z. An isolable bis(germylene)-stabilized plumbylone. Angew. Chem. Int. Ed. 62,

e202215146 (2023).

Tokitoh, N. Synthesis of aromatic species containing a heavier

group 14 element by taking advantage of kinetic stabilization. Bull.

Chem. Soc. Jpn. 77, 429–441 (2004).

Mizuhata, Y., Fujimori, S., Sasamori, T. & Tokitoh, N. Germabenzenylpotassium: a germanium analogue of a phenyl anion. Angew.

Chem. Int. Ed. 56, 4588–4592 (2017).

Fujimori, S., Mizuhata, Y. & Tokitoh, N. Heavy phenyllithium and

-sodium: synthesis and characterization of germanium analogues of

phenyl anion (‘germabenzenyl anions’). Chem. Lett. 47,

708–710 (2018).

Fujimori, S., Mizuhata, Y. & Tokitoh, N. Stannabenzenylpotassium:

the first isolable tin-containing benzene derivative. Chem. Eur. J. 24,

17039–17045 (2018).

Fujimori, S., Mizuhata, Y. & Tokitoh, N. Ru-complexes of an anionic

germabenzenyl ligand. Chem. Commun. 54, 8044–8047 (2018).

Mizuhata, Y., Fujimori, S. & Tokitoh, N. Reaction of germabenzenylpotassium with TBDMSCl: unusual trimerization of germabenzene skeletons. Phosphorus, Sulfur Silicon Relat. Elem. 195,

936–939 (2020).

Article

26. Li, Y., Wang, H. & Li, X. Over one century after discovery: pyrylium

salt chemistry emerging as a powerful approach for the construction of complex macrocycles and metallo-supramolecules. Chem.

Sci. 11, 12249–12268 (2020).

27. Sasamori, T. et al. Synthesis and characterization of a 1,2-digermabenzene. Organometallics 34, 2106–2109 (2015).

28. Simons, R. S., Pu, L., Olmstead, M. M. & Power, P. P. Synthesis and

characterization of the monomeric diaryls M{C6H3-2,6-Mes2}2 (M =

Ge, Sn, or Pb; Mes = 2,4,6-Me3C6H2–) and dimeric aryl–metal

chlorides [M(Cl){C6H3-2,6-Mes2}]2 (M = Ge or Sn). Organometallics

16, 1920–1925 (1997).

29. Sasamori, T., Sugiyama, Y., Takeda, N. & Tokitoh, N. Structure and

properties of an overcrowded 1,2-dibromodigermene. Organometallics 24, 3309–3314 (2005).

30. Hayakawa, N. et al. 1,2-Dihalodigermenes bearing bulky Eind

groups: synthesis, characterization, and conversion to halogermylenoids. Dalton Trans. 47, 814–822 (2018).

31. Maeda, S., Ohno, K. & Morokuma, K. Systematic exploration of the

mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys.

Chem. Chem. Phys. 15, 3683–3701 (2013).

32. Knizia, G. Intrinsic atomic orbitals: an unbiased bridge between

quantum theory and chemical concepts. J. Chem. Theory Comput.

9, 4834–4843 (2013).

33. Knizia, G. & Klein, J. E. Electron flow in reaction mechanisms–

revealed from first principles. Angew. Chem. Int Ed. 54,

5518–5522 (2015).

34. Gleiter, R. & Haberhauer, G. Aromaticity and Other Conjugation

Effects (Wiley-VCH, 2012).

35. Ishida, Y., Sekiguchi, A. & Kabe, Y. 1,4,5-Trigermabicyclo[2.1.0]pent2-en-5-ylium: the isolable bishomocyclopropenylium ion containing a heavier group 14 element. J. Am. Chem. Soc. 125,

11468–11469 (2003).

36. Gerdes, C., Saak, W., Haase, D. & Müller, T. Dibenzosilanorbornadienyl cations and their fragmentation into silyliumylidenes. J. Am.

Chem. Soc. 135, 10353–10361 (2013).

37. Dong, Z., Reinhold, C. R., Schmidtmann, M. & Müller, T. A germylene stabilized by homoconjugation. Angew. Chem. Int. Ed. 55,

15899–15904 (2016).

38. Dong, Z., Reinhold, C. R. W., Schmidtmann, M. & Müller, T. A stable

silylene with a σ2, π- butadiene ligand. J. Am. Chem. Soc. 139,

7117–7123 (2017).

39. Reinhold, C. R. W. et al. A one-step germole to silole transformation

and a stable isomer of a disilabenzene. Chem. Eur. J. 24,

848–854 (2018).

40. Wakita, K., Tokitoh, N., Okazaki, R. & Nagase, S. Synthesis and

properties of an overcrowded silabenzene stable at ambient temperature. Angew. Chem. Int. Ed. 39, 634–636 (2000).

41. Märkl, G., Lieb, F. & Merz, A. A new synthesis of phosphabenzene

derivatives. Angew. Chem. Int. Ed. Engl. 6, 458–459 (1967).

42. Märkl, G. 2,4,6-Triphenylphosphabenzene. Angew. Chem. Int. Ed.

Engl. 5, 846–847 (1966).

43. Baker, R. J., Jones, C., Mills, D. P., Pierce, G. A. & Waugh, M. Investigations into the preparation of groups 13–15 N-Heterocyclic carbene analogues. Inorg. Chim. Acta 361, 427–435 (2008).

44. Nied, D., Klopper, W. & Breher, F. Pentagerma[1.1.1]propellane: a

combined experimental and quantum chemical study on the nature

of the interactions between the bridgehead atoms. Angew. Chem.

Int. Ed. 48, 1411–1416 (2009).

45. Ito, Y. et al. Spirobis(pentagerma[1.1.1]propellane): a stable tetraradicaloid. J. Am. Chem. Soc. 135, 6770–6773 (2013).

46. Heider, Y. & Scheschkewitz, D. Stable unsaturated silicon clusters

(siliconoids). Dalton Trans. 47, 7104–7112 (2018).

Nature Communications | (2023)14:4519

https://doi.org/10.1038/s41467-023-40188-y

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP19H05635

(N.T. and Y.M.), JP20K20447 (N.T.), JP19H05528 (N.T.), JP18H01963

(Y.M.), and JP16H04110 (N.T.) and Integrated Research Consortium on

Chemical Science (IRCCS). Y.M. gratefully acknowledges ISHIZUE 2022

of Kyoto University. This study was supported by the Joint Usage/

Research Center [JURC, Institute for Chemical Research (ICR), Kyoto

University] by providing access to a Bruker Avance III 600 NMR spectrometer. We are furthermore grateful for the computation time, which

was provided by the Super Computer Laboratory (ICR, Kyoto University).

Elemental analyses were carried out at the Microanalytical Laboratory of

the ICR (Kyoto University). The authors thank Prof. Masahiro Yamanaka

(Rikkyo Univ.) for the helpful discussion about computational studies.

Preliminary X-ray diffraction data of 5-2 and 6·NHC were collected at the

BL02B1 beamline of SPring-8 (JASRI, 2022A1621 and 2022A1200).

Author contributions

Y.M., R.N., and N.T. determined the research strategy, and R.N. and R.S.

performed the synthetic experiments. R.N. collected the physical

properties and spectral data of all compounds appearing in this paper.

R.N. and Y.M. performed the X-ray crystallographic analyses and theoretical calculations. Y.M., N.T., and R.W. supervised the work. All authors

co-wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-40188-y.

Correspondence and requests for materials should be addressed to

Norihiro Tokitoh or Yoshiyuki Mizuhata.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A

peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る