リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Breast magnetic resonance imaging for estimation of the tumour extent in patients with pure ductal carcinoma in situ: Comparison between full diagnostic and abbreviated protocols」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Breast magnetic resonance imaging for estimation of the tumour extent in patients with pure ductal carcinoma in situ: Comparison between full diagnostic and abbreviated protocols

白石, めぐみ 東京慈恵会医科大学 DOI:info:doi/10.1016/j.ejrad.2019.108788

2021.10.22

概要

Purpose: To evaluate the rate of concordance between pathology and preoperative breast MRI performed with an abbreviated protocol (AP) or a full diagnostic protocol (FDP) for estimation of the tumour extent in patients with pure ductal carcinoma in situ (DCIS).

Methods: This retrospective study included 164 patients with pathologically proven DCIS who underwent pre- operative breast MRI. Two radiologists independently evaluated the tumour extent on MRI with (FDP) and without the delayed phase (AP) and compared the readings with the pathological tumour extent. The back- ground parenchymal enhancement (BPE) and morphology were also evaluated. Furthermore, the influence of the degree of BPE, presence or absence of B2 and B3 lesions, and pathological DCIS grade on the accuracy of MRI findings was assessed. Concordance between MRI and pathology was evaluated using correlation analysis.

Results: Spearman’s rank correlation coefficients for the concordance between MRI and pathology were 0.63 (reader 1) and 0.69 (reader 2) with AP and 0.65 and 0.73 (readers 1 and 2, respectively) with FDP. For both readers, the difference in the measured value between FDP and pathology was significantly smaller than that between AP and pathology (p < 0.001). The inter-reader variation in the measured tumour extent was larger with FDP than with AP. The presence of B3 lesions, low-grade DCIS, and moderate/marked BPE lowered the rate of concordance between MRI and pathology.

Conclusions: Our findings suggest that preoperative MRI with FDP is more accurate than that with AP alone for estimation of the tumour extent in patients with pure DCIS.

参考文献

[1] S.W. Duffy, L. Tabar, B. Vitak, N.E. Day, R.A. Smith, H.H. Chen, M.F. Yen, The relative contributions of screen-detected in situ and invasive breast carcinomas in reducing mortality from the disease, Eur. J. Cancer 39 (2003) 1755–1760, https:// doi.org/10.1016/s0959-8049(03)00259-4.

[2] S.W. Duffy, A. Dibden, D. Michalopoulos, J. Offman, D. Parmar, J. Jenkins, B. Collins, T. Robson, S. Scorfield, K. Green, C. Hall, Screen detection of ductal carcinoma in situ and subsequent incidence of invasive interval breast cancers: a retrospective population-based study, Lancet Oncol. 17 (2016) 109–114, https:// doi.org/10.1016/s1470-2045(15)00446-5.

[3] C.K. Kuhl, S. Schrading, H.B. Bieling, E. Wardelmann, C.C. Leutner, R. Koenig, W. Kuhn, H.H. Schild, MRI for diagnosis of pure ductal carcinoma in situ: a pro- spective observational study, Lancet 370 (2007) 485–492, https://doi.org/10. 1016/s0140-6736(07)61232-x.

[4] H. Preibsch, J. Beckmann, J. Pawlowski, C. Kloth, M. Hahn, A. Staebler, B.M. Wietek, K. Nikolaou, B. Wiesinger, Accuracy of breast magnetic resonance imaging compared to mammography in the preoperative detection and measure- ment of pure ductal carcinoma in situ: a retrospective analysis, Acad. Radiol. (2018), https://doi.org/10.1016/j.acra.2018.07.013.

[5] C. Boetes, R.D. Mus, R. Holland, J.O. Barentsz, S.P. Strijk, T. Wobbes, J.H. Hendriks, S.H. Ruys, Breast tumors: comparative accuracy of MR imaging relative to mam- mography and US for demonstrating extent, Radiology 197 (1995) 743–747, https://doi.org/10.1148/radiology.197.3.7480749.

[6] K. Schelfout, M. Van Goethem, E. Kersschot, C. Colpaert, A.M. Schelfhout, P. Leyman, I. Verslegers, I. Biltjes, J. Van Den Haute, J.P. Gillardin, W. Tjalma, Contrast-enhanced MR imaging of breast lesions and effect on treatment, Eur. J. Surg. Oncol. 30 (2004) 501–507, https://doi.org/10.1016/j.ejso.2004.02.003.

[7] C.K. Kuhl, K. Strobel, H.B. Bieling, E. Wardelmann, W. Kuhn, N. Maass, S. Schrading, Impact of preoperative breast MR imaging and MR-guided surgery on diagnosis and surgical outcome of women with invasive breast cancer with and without DCIS component, Radiology 284 (2017) 645–655, https://doi.org/10. 1148/radiol.2017161449.

[8] W.A. Berg, L. Gutierrez, M.S. NessAiver, W.B. Carter, M. Bhargavan, R.S. Lewis, O.B. Ioffe, Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer, Radiology 233 (2004) 830–849, https://doi.org/10.1148/radiol.2333031484.

[9] J.S. Sung, J. Li, G. Da Costa, S. Patil, K.J. Van Zee, D.D. Dershaw, E.A. Morris, Preoperative breast MRI for early-stage breast cancer: effect on surgical and long- term outcomes, AJR Am. J. Roentgenol. 202 (2014) 1376–1382, https://doi.org/ 10.2214/ajr.13.11355.

[10] I.M. Obdeijn, M.M. Tilanus-Linthorst, S. Spronk, C.H. van Deurzen, C.D. Monye, M.M. Hunink, M.B. Menke, Preoperative breast MRI can reduce the rate of tumor- positive resection margins and reoperations in patients undergoing breast-conser- ving surgery, AJR Am. J. Roentgenol. 200 (2013) 304–310, https://doi.org/10. 2214/ajr.12.9185.

[11] A. Petrillo, R. Fusco, M. Petrillo, F. Triunfo, S. Filice, P. Vallone, S.V. Setola, M. Rubulotta, M. Di Bonito, M. Rinaldo, M. D’aiuto, Added value of breast MRI for preoperative diagnosis of ductal carcinoma in situ: diagnostic performance on 362 patients, Clin. Breast Cancer 17 (2017) 127–134, https://doi.org/10.1016/j.clbc. 2016.12.007.

[12] C. Balleyguier, A. Dunant, L. Ceugnart, M. Kandel, M.-P. Chauvet, P. Chérel, C. Mazouni, P. Henrot, P. Rauch, J. Chopier, S. Zilberman, I. Doutriaux-Dumoulin, I. Jaffre, A. Jalaguier, G. Houvenaeghel, N. Guérin, F. Callonnec, C. Chapellier, I. Raoust, M.-C. Mathieu, F. Rimareix, J. Bonastre, J.-R. Garbay, Preoperative breast magnetic resonance imaging in women with local ductal carcinoma in situ to op- timize surgical outcomes: results from the randomized phase III trial IRCIS, J. Clin. Oncol. 37 (2019) 885–892, https://doi.org/10.1200/JCO.18.00595.

[13] S.H. Baek, W.J. Choi, J.H. Cha, H.H. Kim, H.J. Shin, E.Y. Chae, Comparison of mammography, ultrasound and MRI in size assessment of ductal carcinoma in situ with histopathologic correlation, Acta radiol. 58 (2017) 1434–1441, https://doi. org/10.1177/0284185117698860.

[14] T. Hata, H. Takahashi, K. Watanabe, M. Takahashi, K. Taguchi, T. Itoh, S. Todo, Magnetic resonance imaging for preoperative evaluation of breast cancer: a com- parative study with mammography and ultrasonography, J. Am. Coll. Surg. 198 (2004) 190–197, https://doi.org/10.1016/j.jamcollsurg.2003.10.008.

[15] A.P. Schouten van der Velden, C. Boetes, P. Bult, T. Wobbes, Magnetic resonance imaging in size assessment of invasive breast carcinoma with an extensive in- traductal component, BMC Med. Imaging 9 (2009) 5, https://doi.org/10.1186/ 1471-2342-9-5.

[16] M. Rominger, D. Berg, T. Frauenfelder, A. Ramaswamy, N. Timmesfeld, Which factors influence MRI-pathology concordance of tumour size measurements in breast cancer? Eur. Radiol. 26 (2016) 1457–1465, https://doi.org/10.1007/ s00330-015-3935-5.

[17] L.J. Esserman, A.S. Kumar, A.F. Herrera, J. Leung, A. Au, Y.Y. Chen, D.H. Moore, D.F. Chen, J. Hellawell, D. Wolverton, E.S. Hwang, Magnetic resonance imaging captures the biology of ductal carcinoma in situ, J. Clin. Oncol. 24 (2006) 4603–4610, https://doi.org/10.1200/jco.2005.04.5518.

[18] A.S. Kumar, D.F. Chen, A. Au, Y.Y. Chen, J. Leung, E.R. Garwood, J. Gibbs, N. Hylton, L.J. Esserman, Biologic significance of false-positive magnetic resonance imaging enhancement in the setting of ductal carcinoma in situ, Am. J. Surg. 192 (2006) 520–524, https://doi.org/10.1016/j.amjsurg.2006.07.003.

[19] C.K. Kuhl, S. Schrading, K. Strobel, H.H. Schild, R.D. Hilgers, H.B. Bieling, Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI, J. Clin. Oncol. 32 (2014) 2304–2310, https://doi.org/10. 1200/jco.2013.52.5386.

[20] N. Morakkabati-Spitz, C. Leutner, H. Schild, F. Traeber, C. Kuhl, Diagnostic use- fulness of segmental and linear enhancement in dynamic breast MRI, Eur. Radiol. 15 (2005) 2010–2017, https://doi.org/10.1007/s00330-005-2755-4.

[21] E.L. Rosen, S.A. Smith-Foley, W.B. DeMartini, P.R. Eby, S. Peacock, C.D. Lehman, BI-RADS MRI enhancement characteristics of ductal carcinoma in situ, Breast J. 13 (2007) 545–550, https://doi.org/10.1111/j.1524-4741.2007.00513.x.

[22] E.A. Morris, C.E. Comstock, C.H. Lee, et al., ACR BI-RADS® magnetic resonance imaging, in: Committee on BI-RADS® (Ed.), ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System, vol. 2013, American College of Radiology, Reston, 2013.

[23] R.M. Mann, C.K. Kuhl, K. Kinkel, C. Boetes, Breast MRI, Guidelines from the eur- opean society of breast imaging, Eur. Radiol. 18 (2008) 1307–1318, https://doi. org/10.1007/s00330-008-0863-7.

[24] O. Ellis, S. Humphreys, M. Michell, S.E. Pinder, C.A. Wells, H.D. Zakhour, Guidelines for non-Operative Diagnostic Procedures and Reporting in Cancer Screening Vol. 50 N.H.S.B.S.P. Publications, 2001, pp. 35–40.

[25] I.O. Ellis, Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biopsy, Mod. Pathol. 23 (Suppl 2) (2010) S1–S7, https://doi.org/10. 1038/modpathol.2010.56.

[26] P.A. Baltzer, M. Benndorf, M. Dietzel, M. Gajda, I.B. Runnebaum, W.A. Kaiser, False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study, AJR Am. J. Roentgenol. 194 (2010) 1658–1663, https://doi.org/10.2214/ ajr.09.3486.

[27] S.A. Jansen, T. Paunesku, X. Fan, G.E. Woloschak, S. Vogt, S.D. Conzen, T. Krausz, G.M. Newstead, G.S. Karczmar, Ductal carcinoma in situ: X-ray fluorescence mi- croscopy and dynamic contrast-enhanced MR imaging reveals gadolinium uptake within neoplastic mammary ducts in a murine model, Radiology 253 (2009) 399–406, https://doi.org/10.1148/radiol.2533082026.

[28] A.J. Guidi, S.J. Schnitt, L. Fischer, K. Tognazzi, J.R. Harris, H.F. Dvorak, L.F. Brown, Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in patients with ductal carcinoma in situ of the breast, Cancer 80 (1997) 1945–1953, https://doi.org/10.1002/(SICI)1097-0142(19971115) 80:10<1945::AID-CNCR11>3.0.CO;2-Y.

[29] H. Neubauer, M. Li, R. Kuehne-Heid, A. Schneider, W.A. Kaiser, High grade and non-high grade ductal carcinoma in situ on dynamic MR mammography: char- acteristic findings for signal increase and morphological pattern of enhancement, Br. J. Radiol. 76 (2003) 3–12, https://doi.org/10.1259/bjr/14883856.

[30] G. Santamaria, M. Velasco, B. Farrus, F.X. Caparros, P.L. Fernandez, Dynamic contrast-enhanced MRI reveals the extent and the microvascular pattern of breast ductal carcinoma in situ, Breast J. 19 (2013) 402–410, https://doi.org/10.1111/tbj. 12135.

[31] C.K. Kuhl, A. Keulers, K. Strobel, H. Schneider, N. Gaisa, S. Schrading, Not all false positive diagnoses are equal: on the prognostic implications of false-positive diag- noses made in breast MRI versus in mammography/digital tomosynthesis screening, Breast Cancer Res. 20 (2018) 13, https://doi.org/10.1186/s13058-018-0937-7.

[32] M. Zaidi, S. Khan, N.B. Farooqi, K. Abbas, R. Idrees, Effect of formalin fixation on surgical margins in breast cancer surgical specimen, Int. J. Breast Cancer 2014 (2014) 121838, , https://doi.org/10.1155/2014/121838.

[33] M. Dietzel, P.A.T. Baltzer, How to use the Kaiser score as a clinical decision rule for diagnosis in multiparametric breast MRI: a pictorial essay, Insights Imaging 9 (2018) 325–335, https://doi.org/10.1007/s13244-018-0611-8.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る