リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Functional evolution of haloalkane dehalogenases for the degradation of persistent environmental pollutants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Functional evolution of haloalkane dehalogenases for the degradation of persistent environmental pollutants

Chen Nannan 東北大学

2020.09.25

概要

Pesticides, which are effective in pest and disease control management, are important for agriculture and public health purposes, but their excessive use affects food security and concurrent health threats for humans (Macdonald et al., 2000). Most of traditional pesticides are recalcitrant organic compounds which are not easily degraded by natural means and they are referred to as persistence organic pollutants (POPs). POPs are of two types, the organophosphate pesticides and the organochloride pesticides, and are of great environmental and health concerns due to their toxic, persistent and bio-accumulative capacities (Barber et al., 2005). Many of them may form residual compounds which are more toxic in the soil and can be accumulated in living tissue through direct or indirect means, and thus they can get into the food chain of an ecosystem and affect wide range of organisms.

この論文で使われている画像

参考文献

Abhilash, P. C., Jamil, S., Singh, V., Singh, A., Singh, N., & Srivastava, S. C. (2008). Occurrence and distribution of hexachlorocyclohexane isomers in vegetation samples from a contaminated area. Chemosphere, 72(1), 79-86. https://doi.org/10.1016/j.chemosphere.2008.01.056

Ang, T. F., Maiangwa, J., Salleh, A. B., Normi, Y. M., & Leow, T. C. (2018). Dehalogenases: From improved performance to potential microbial dehalogenation applications. Molecules, 23(5), 1-40. https://doi.org/10.3390/molecules23051100

Babkova, P., Sebestova, E., Brezovsky, J., Chaloupkova, R., & Damborsky, J. (2017). Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. ChemBioChem, 18(14), 1448-1456. https://doi.org/10.1002/cbic.201700197

Baek, S. C., Ho, T. H., Lee, H. W., Jung, W. K., Gang, H. S., Kang, L. W., & Kim, H. (2017). Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues. Applied Microbiology and Biotechnology, 101(10), 4073-4083.

https://doi.org/10.1007/s00253-017-8145-4

Bai, W., Cao, Y., Liu, J., Wang, Q., & Jia, Z. (2016). Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnology, 16(1), 1-9. https://doi.org/10.1186/s12896-016-0310-9

Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: Biogenic formation of organohalogens. Chemosphere, 52(2), 313-324. https://doi.org/10.1016/S0045-6535(03)00211-X

Barber, J. L., Sweetman, A. J., Van Wijk, D., & Jones, K. C. (2005). Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Science of the Total Environment, 349(1-3), 1-44. https://doi.org/10.1016/j.scitotenv.2005.03.014

Bloom, J. D., & Arnold, F. H. (2009). In the light of directed evolution: Pathways of adaptive protein evolution. In the Light of Evolution, 3, 149-163. https://doi.org/10.17226/12692

Böltner, D., Moreno-morillas, S., & Ramos, J. (2005). <51 Boltner2005.Pdf>. 7, 1329-1338. https://doi.org/10.1111/j.1462-2920.2005.00820.x

Bosma, T., Damborský, J., Stucki, G., & Janssen, D. B. (2002). Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Applied and Environmental Microbiology, 68(7), 3582-3587. https://doi.org/10.1128/AEM.68.7.3582-3587.2002

Buryska, T., Babkova, P., Vavra, O., Damborsky, J., & Prokop, Z. (2018). A haloalkane dehalogenase from a marine microbial consortium possessing exceptionally broad substrate specificity. Applied and Environmental Microbiology. 84(2), e01684-17. https://doi.org/10.1128/AEM.01684-17

Cérémonie, H., Boubakri, H., Mavingui, P., Simonet, P., & Vogel, T. M. (2006). Plasmid-encoded γ-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiology Letters, 257(2), 243-252. https://doi.org/10.1111/j.1574-6968.2006.00188.x

Chaloupkova, R., Liskova, V., Toul, M., Markova, K., Sebestova, E., Hernychova, L., Marek, M., Pinto, G. P., Pluskal, D., Waterman, J., Prokop, Z., & Damborsky, J. (2019). Light-Emitting Dehalogenases: Reconstruction of Multifunctional Biocatalysts. ACS Catalysis. 9, 4810-4823. https://doi.org/10.1021/acscatal.9b01031

Chaloupkova, R., Prokop, Z., Sato, Y., Nagata, Y., & Damborsky, J. (2011). Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: The effect of pH and temperature. FEBS Journal, 278(15), 2728-2738. https://doi.org/10.1111/j.1742-4658.2011.08203.x Chaloupkova, R., Prudnikova, T., Rezacova, P., Prokop, Z., Koudelakova, T., Daniel, L., Brezovsky, J., Ikeda-Ohtsubo, W., Sato, Y., Kuty, M., Nagata, Y., Smatanova, I. K., & Damborsky, J. (2014). Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Crystallographica Section D: Biological

Crystallography, 70(7), 1884-1897. https://doi.org/10.1107/S1399004714009018

Chaloupková, R., Sýkorová, J., Prokop, Z., Jesenská, A., Monincová, M., Pavlová, M., Tsuda, M., Nagata, Y., & Damborský, J. (2003). Modification of Activity and Specificity of Haloalkane Dehalogenase from Sphingomonas paucimobilis UT26 by Engineering of Its Entrance Tunnel. Journal of Biological Chemistry, 278(52), 52622-52628. https://doi.org/10.1074/jbc.M306762200

Chan, W. Y., Wong, M., Guthrie, J., Savchenko, A. V., Yakunin, A. F., Pai, E. F., & Edwards, E. A. (2010). Sequenceand activity-based screening of microbial genomes for novel dehalogenases. Microbial Biotechnology, 3(1), 107-120. https://doi.org/10.1111/j.1751-7915.2009.00155.x

Chang, Z., Sitachitta, N., Rossi, J. V., Roberts, M. A., Flatt, P. M., Jia, J., Sherman, D. H., & Gerwick, W. H. (2004). Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 67(8), 1356-1367. https://doi.org/10.1021/np0499261

Chen, H., Li, M., Liu, C., Zhang, H., Xian, M., & Liu, H. (2018). Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Factories, 17(1), 1-14. https://doi.org/10.1186/s12934-018-0913-z

Chen, J. J., Liang, X., Li, H. X., Chen, T. J., & Zhu, P. (2017). Improving the catalytic property of the glycoside hydrolase LXYL-P1–2 by directed evolution. Molecules. 22(12), 2133-2146. https://doi.org/10.3390/molecules22122133

Cheng, Q., Gao, H., & Hu, N. (2016). A trehalase from Zunongwangia sp.: Characterization and improving catalytic efficiency by directed evolution. BMC Biotechnology, 16(1), 6-13. https://doi.org/10.1186/s12896-016-0239-z

Chovancová, E., Kosinski, J., Bujnicki, J. M., & Damborský, J. (2007). Phylogenetic analysis of haloalkane dehalogenases. Proteins: Structure, Function and Genetics. 67(2):305-316. https://doi.org/10.1002/prot.21313

Contag, C. H., Spilman, S. D., Contag, P. R., Oshiro, M., Eames, B., Dennery, P., Stevenson, D. K., & Benaron, D. A. (1997). Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter. Photochemistry and Photobiology, 66(4), 523-531. https://doi.org/10.1111/j.1751-1097.1997.tb03184.x

Crum, M. A., Trevor Sewell, B., & Benedik, M. J. (2016). Bacillus pumilus cyanide dihydratase mutants with higher catalytic activity. Frontiers in Microbiology, 7(AUG), 1-10. https://doi.org/10.3389/fmicb.2016.01264

Daniel, L., Buryska, T., Prokop, Z., Damborsky, J., & Brezovsky, J. (2015). Mechanism-based discovery of novel substrates of haloalkane dehalogenases using in silico screening. Journal of Chemical Information and Modeling, 55(1), 54-62. https://doi.org/10.1021/ci500486y

De Jong, R. M., & Dijkstra, B. W. (2003). Structure and mechanism of bacterial dehalogenases: Different ways to cleave a carbon-halogen bond. In Current Opinion in Structural Biology. 13(6), 722 -730. https://doi.org/10.1016/j.sbi.2003.10.009

Dean, A. M., & Thornton, J. W. (2007). Mechanistic approach to study evolution. Nature Reviews Genetics, 8(9), 675-688.

Dogra, C., Raina, V., Pal, R., Suar, M., Lal, S., Gartemann, K., Holliger, C., & Meer, J. R. Van Der. (2004). Organization of lin Genes and IS6100 among Different Strains of Evidence for Horizontal Gene Transfer. Journal of Bacteriology, 186(8), 2225-2235. https://doi.org/10.1128/JB.186.8.2225

Endo, R., Ohtsubo, Y., Tsuda, M., & Nagata, Y. (2006). Growth inhibition by metabolites of γ-hexachlorocyclohexane in Sphingobium japonicum UT26. Bioscience, Biotechnology and Biochemistry, 70(4), 1029-1032. https://doi.org/10.1271/bbb.70.1029

Engene, N., Rottacker, E. C., Kaštovský, J., Byrum, T., Choi, H., Ellisman, M. H., Komárek, J., & Gerwick, W. H. (2012). Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. International Journal of Systematic and Evolutionary Microbiology, 62(5), 1171-1178. https://doi.org/10.1099/ijs.0.033761-0

Forloni, M., Liu, A. Y., & Wajapeyee, N. (2018). Random mutagenesis using error-prone DNA polymerases. Cold Spring Harbor Protocols. 2018(3). https://doi.org/10.1101/pdb.prot097741

Gehret, J. J., Gu, L., Geders, T. W., Brown, W. C., Gerwick, L., Gerwick, W. H., Sherman, D. H., & Smith, J. L. (2012). Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Science, 21(2), 239-248. https://doi.org/10.1002/pro.2009

Gonzalez, D., Hiblot, J., Darbinian, N., Miller, J. C., Gotthard, G., Amini, S., Chabriere, E., & Elias, M. (2014). Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein. FEBS Open Bio, 4, 121-127. https://doi.org/10.1016/j.fob.2013.12.006

Harms, M. J., & Thornton, J. W. (2010). Analyzing protein structure and function using ancestral gene reconstruction. In Current Opinion in Structural Biology. 20(3), 360-366. https://doi.org/10.1016/j.sbi.2010.03.005

Inaba, S., Sakai, H., Kato, H., Horiuchi, T., Yano, H., Ohtsubo, Y., Tsuda, M., & Nagata, Y. (2020). Expression of an alcohol dehydrogenase gene in a heterotrophic bacterium induces carbon dioxide-dependent high-yield growth under oligotrophic conditions. Microbiology, 166, 531-545. https://doi.org/10.1099/mic.0.000908

Ito, M., Prokop, Z., Klvaňa, M., Otsubo, Y., Tsuda, M., Damborský, J., & Nagata, Y. (2007). Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Archives of Microbiology, 188(4), 313-325. https://doi.org/10.1007/s00203-007-0251-8

Iwasaki, I., Utsumi, S., & Ozawa, T. (1952). New Colorimetric Determination of Chloride using Mercuric Thiocyanate and Ferric Ion. 225(3), 226. Bulletin of the Chemical Society of Japan. https://doi.org/10.1246/bcsj.25.226

Janssen, D. B. B. T.-A. in A. M. (2007). Biocatalysis by Dehalogenating Enzymes. Academic Press. 61, 233-252. https://doi.org/https://doi.org/10.1016/S0065-2164(06)61006-X

Jesenská, A., Pavlová, M., Strouhal, M., Chaloupková, R., Těšínská, I., Monincová, M., Prokop, Z., Bartoš, M., Pavlík, I., Rychlík, I., Möbius, P., Nagata, Y., & Damborský, J. (2005). Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Applied and Environmental Microbiology, 71(11), 6736-6745. https://doi.org/10.1128/AEM.71.11.6736-6745.2005

Jiang, W., Zhuang, Y., Wang, S., & Fang, B. (2015). Directed evolution and resolution mechanism of 1, 3-propanediol oxidoreductase from Klebsiella pneumoniae toward higher activity by error-prone PCR and bioinformatics. PLoS ONE, 10(11), 1-10. https://doi.org/10.1371/journal.pone.0141837

Kaczmarczyk, A., Vorholt, J. A., & Francez-Charlot, A. (2012). Markerless gene deletion system for sphingomonads. Applied and Environmental Microbiology, 78(10), 3774-3777. https://doi.org/10.1128/AEM.07347-11

Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., & Kschischo, M. (2010). Grofit: Fitting biological growth curves with R. Journal of Statistical Software. 33(7), 1-21. https://doi.org/10.18637/jss.v033.i07

Koudelakova, T., Bidmanova, S., Dvorak, P., Pavelka, A., Chaloupkova, R., Prokop, Z., & Damborsky, J. (2013). Haloalkane dehalogenases: Biotechnological applications. In Biotechnology Journal. 8(1), 32-45. https://doi.org/10.1002/biot.201100486

Koudelakova, T., Chovancova, E., Brezovsky, J., Monincova, M., Fortova, A., Jarkovsky, J., & Damborsky, J. (2011). Substrate specificity of haloalkane dehalogenases. Biochemical Journal. 435(2), 345-354. https://doi.org/10.1042/BJ20101405

Kumari, R., Subudhi, S., Suar, M., Dhingra, G., Raina, V., Dogra, C., Lal, S., Van der Meer, J. R., Holliger, C., & Lal, R. (2002). Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Applied and Environmental Microbiology, 68(12), 6021-6028. https://doi.org/10.1128/AEM.68.12.6021-6028.2002

Lal, R., Dogra, C., Malhotra, S., Sharma, P., & Pal, R. (2006). Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends in Biotechnology, 24(3), 121-130. https://doi.org/10.1016/j.tibtech.2006.01.005

Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., Raina, V., Kohler, H.-P. E., Holliger, C., Jackson, C., & Oakeshott, J. G. (2010). Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation. Microbiology and Molecular Biology Reviews, 74(1), 58-80. https://doi.org/10.1128/mmbr.00029-09

Li, Y. F., Scholtz, M. T., & Van Heyst, B. J. (2003). Global gridded emission inventories of β-hexachlorocyclohexane. Environmental Science and Technology, 37(16), 3493-3498. https://doi.org/10.1021/es034157d

Lin, L., Fu, C., & Huang, W. (2016). Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzyme and Microbial Technology, 86, 52-58. https://doi.org/10.1016/j.enzmictec.2016.01.011

Loening, A. M., Fenn, T. D., Wu, A. M., & Gambhir, S. S. (2006). Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Engineering, Design and Selection, 19(9), 391-400. https://doi.org/10.1093/protein/gzl023

Lorenz, W. W., McCann, R. O., Longiaru, M., & Cormier, M. J. (1991). Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proceedings of the National Academy of Sciences of the United States of America, 88(10), 4438-4442. https://doi.org/10.1073/pnas.88.10.4438

Los, G. V., Encell, L. P., McDougall, M. G., Hartzell, D. D., Karassina, N., Zimprich, C., Wood, M. G., Learish, R., Ohana, R. F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., Klaubert, D. H., Bulleit, R. F., & Wood, K. V. (2008). HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chemical Biology, 3(6), 373-382. https://doi.org/10.1021/cb800025k

Macdonald, R. W., Barrie, L. A., Bidleman, T. F., Diamond, M. L., Gregor, D. J., Semkin, R. G., Strachan, W. M. J., Li, Y. F., Wania, F., Alaee, M., Alexeeva, L. B., Backus, S. M., Bailey, R., Bewers, J. M., Gobeil, C., Halsall, C. J., Harner, T., Hoff, J. T., Jantunen, L. M. M., … Yunker, M. B. (2000). Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. In Science of the Total Environment. 254(2-3), 93-234. https://doi.org/10.1016/S0048-9697(00)00434-4

Marek, J., Vevodova, J., Smatanova, I. K., Nagata, Y., Svensson, L. A., Newman, J., Takagi, M., & Damborsky, J. (2000). Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry, 39(46), 14082-14086. https://doi.org/10.1021/bi001539c

Marietta, M. A., Yoon, P. S., Iyengar, R., Leaf, C. D., & Wishnok, J. S. (1988). Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor. Proc. Natl. Acad. Sci. U.S.A.

Marvanová, S., Nagata, Y., Wimmerová, M., Sýkorová, J., Hynková, K., & Damborský, J. (2001). Biochemical characterization of broad-specificity enzymes using multivariate experimental design and a colorimetric microplate assay: Characterization of the haloalkane dehalogenase mutants. Journal of Microbiological Methods, 44(2),

149-157. https://doi.org/10.1016/S0167-7012(00)00250-5

Moriuchi, R., Tanaka, H., Nikawadori, Y., Ishitsuka, M., Ito, M., Ohtsubo, Y., Tsuda, M., Damborsky, J., Prokop, Z., &

Nagata, Y. (2014). Stepwise enhancement of catalytic performance of haloalkane dehalogenase LinB towards β-hexachlorocyclohexane. AMB Express, 4(1), 1-10. https://doi.org/10.1186/s13568-014-0072-5

Nagata, Y., Nariya, T., Ohtomo, R., Fukuda, M., Yano, K., & Takagi, M. (1993). Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis. Journal of Bacteriology, 175(20), 6403-6410. https://doi.org/10.1128/jb.175.20.6403-6410.1993

Nagata, Y, Endo, R., Ito, M., Ohtsubo, Y., & Tsuda, M. (2007). Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. In Applied Microbiology and Biotechnology. 76, 741-752. https://doi.org/10.1007/s00253-007-1066-x

Nagata, Y, Kamakura, M., Endo, R., Miyazaki, R., Ohtsubo, Y., & Tsuda, M. (2006). Distribution of γ-hexachlorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26. FEMS Microbiology Letters, 256(1), 112-118. https://doi.org/10.1111/j.1574-6968.2005.00096.x

Nagata, Y, Mori, K., Takagi, M., Murzin, A. G., & Damborsk, J. (2001). Identification of protein fold and catalytic residues of γhexachlorocyclohexane dehydrochlorinase LinA. Proteins: Structure, Function and Genetics. 45(4), 471-477. https://doi.org/10.1002/prot.10007

Nagata, Y, Natsui, S., Endo, R., Ohtsubo, Y., Ichikawa, N., Ankai, A., Oguchi, A., Fukui, S., Fujita, N., & Tsuda, M. (2011). Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme and Microbial Technology. 49(6-7), 499-508. https://doi.org/10.1016/j.enzmictec.2011.10.005

Nagata, Y, Ohtsubo, Y., & Tsuda, M. (2015). Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Applied Microbiology and Biotechnology, 99(23), 9865-9881. https://doi.org/10.1007/s00253-015-6954-x

Nagata, Y, Prokop, Z., Sato, Y., Jerabek, P., Kumar, A., Ohtsubo, Y., Tsuda, M., & Damborský, J. (2005). Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Applied and Environmental Microbiology, 71(4), 2183-2185. https://doi.org/10.1128/AEM.71.4.2183-2185.2005

Naqvi, T., Warden, A. C., French, N., Sugrue, E., Carr, P. D., Jackson, C. J., & Scott, C. (2014). A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS ONE, 9(4). e94177. https://doi.org/10.1371/journal.pone.0094177

Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. A., Holmes, I. H., Schindler, J. F., Unkefer, C. J., & Terwilliger, T. C. (1999). Haloalkane dehalogenases: Structure of a Rhodococcus enzyme. Biochemistry, 38(49), 16105-16114. https://doi.org/10.1021/bi9913855

Oakley, A. J., Klvaňa, M., Otyepka, M., Nagata, Y., Wilce, M. C. J., & Damborský, J. (2004). Crystal Structure of Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 Å Resolution: Dynamics of Catalytic Residues. Biochemistry. 43(4), 870-878. https://doi.org/10.1021/bi034748g

Okai, M., Kubota, K., Fukuda, M., Nagata, Y., Nagata, K., & Tanokura, M. (2010). Crystal Structure of Γ-Hexachlorocyclohexane Dehydrochlorinase LinA from Sphingobium japonicum UT26. Journal of Molecular Biology. 403(2), 260-269. https://doi.org/10.1016/j.jmb.2010.08.043

Okai, M., Ohtsuka, J., Imai, L. F., Mase, T., Moriuchi, R., Tsuda, M., Nagata, K., Nagata, Y., & Tanokura, M. (2013). Crystal structure and site-directed mutagenesis analyses of haloalkane dehalogenase linB from sphingobium sp. Strain MI1205. Journal of Bacteriology, 195(11), 2642-2651. https://doi.org/10.1128/JB.02020-12

Ortlund, E., Bridgham, J. T., Redinbo, M. R., & Thornton, J. W. (2007). Crystal Structure of an Ancienct Protein. Science, 317(5844), 1544-1548. https://doi.org/10.1126/science.1142819.Crystal

Peisajovich, S. G., Rockah, L., & Tawfik, D. S. (2006). Evolution of new protein topologies through multistep gene rearrangements. Nature Genetics. 38(2), 168-174. https://doi.org/10.1038/ng1717

Pritchard, L., Corne, D., Kell, D., Rowland, J., & Winson, M. (2005). A general model of error-prone PCR. Journal of Theoretical Biology, 234(4), 497-509. https://doi.org/10.1016/j.jtbi.2004.12.005

Prokop, Zbyněk, Damborský, J., Janssen, D. B., & Nagata, Y. (2009). Method of production of optically active halohydrocarbons and alcohols using hydrolytic dehalogenation catalysed by haloalkane dehalogenases. US Patent 7632666. http://www.patentstorm.us/patents/7632666/description.html

Prokop, Zbyněk, Opluštil, F., DeFrank, J., & Damborský, J. (2006). Enzymes fight chemical weapons. Biotechnology Journal, 1(12), 1370-1380. https://doi.org/10.1002/biot.200600166

Prokop, Zbynek, Sato, Y., Brezovsky, J., Mozga, T., Chaloupkova, R., Koudelakova, T., Jerabek, P., Stepankova, V., Natsume, R., Van Leeuwen, J. G. E., Janssen, D. B., Florian, J., Nagata, Y., Senda, T., & Damborsky, J. (2010). Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angewandte Chemie - International Edition, 49(35), 6111-6115. https://doi.org/10.1002/anie.201001753

Rezaie, E., Latifi, A. M., & Mirzaei, M. (2018). Activity improvement of organophosphorus hydrolase enzyme by error prone PCR method. Journal of Applied Biotechnology Reports, 5(3), 100-104. https://doi.org/10.29252/JABR.05.03.03

Sato, Y., Monincová, M., Chaloupková, R., Prokop, Z., Ohtsubo, Y., Minamisawa, K., Tsuda, M., Damborsky, J., & Nagata, Y. (2005). Two rizobial srains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Applied and Environmental Microbiology, 71(8), 4372-4379. https://doi.org/10.1128/AEM.71.8.4372-4379.2005

Sato, Y., Natsume, R., Tsuda, M., Damborsky, J., Nagata, Y., & Senda, T. (2007). Crystallization and preliminary crystallographic analysis of a haloalkane dehalogenase, DbjA, from Bradyrhizobium japonicum USDA110. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63(4), 294-296. https://doi.org/10.1107/S1744309107008652

Schäfer, A., Tauch, A., Jsger, W., Kalinowski, J., Thierbachb, G., & Piihler, A. (1994). pK18mobsacB. Gene.

Schweizer, H. P. (1992). Alielic exchange in Pseudomonas aeruginosa using novel ColE1‐type vectors and a family of cassettes containing a portable oriT and the counter‐selectable Bacillus subtilis sacB marker. Molecular Microbiology. 6(9), 1195-1204. https://doi.org/10.1111/j.1365-2958.1992.tb01558.x

Smith, S. D., Wang, S., & Rausher, M. D. (2013). Functional evolution of an anthocyanin pathway enzyme during a flower color transition. Molecular Biology and Evolution, 30(3), 602-612. https://doi.org/10.1093/molbev/mss255

Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology. 189, 113-130. https://doi.org/10.1016/0022-2836(86)90385-2

Tabata, M., Ohhata, S., Nikawadori, Y., Kishida, K., Sato, T., Kawasumi, T., Kato, H., Ohtsubo, Y., Tsuda, M., & Nagata, Y. (2016). Comparison of the complete genome sequences of four c-hexachlorocyclohexane-degrading bacterial strains: insights into the evolution of bacteria able to degrade a recalcitrant man-made pesticide. DNA Research, 23(6), 581-599. https://doi.org/10.1093/dnares/dsw041

Takenaka, Y., Noda-Ogura, A., Imanishi, T., Yamaguchi, A., Gojobori, T., & Shigeri, Y. (2013). Computational analysis and functional expression of ancestral copepod luciferase. Gene, 528(2), 201-205. https://doi.org/10.1016/j.gene.2013.07.011

Terada, I., Kwon, S. T., Miyata, Y., Matsuzawa, H., & Ohta, T. (1990). Unique precursor structure of an extracellular protease, aqualysin I, with NH2- and COOH-terminal pro-sequences and its processing in Escherichia coli. Journal of Biological Chemistry. 265(12), 6576-6581.

Trantírek, L., Hynková, K., Nagata, Y., Murzin, A., Ansorgová, A., Sklenář, V., & Damborský, J. (2001). Reaction Mechanism and Stereochemistry of γ-Hexachlorocyclohexane Dehydrochlorinase LinA. Journal of Biological Chemistry, 276(11), 7734-7740. https://doi.org/10.1074/jbc.M007452200

Tratsiak, K., Degtjarik, O., Drienovska, I., Chrast, L., Rezacova, P., Kuty, M., Chaloupkova, R., Damborsky, J., & Kuta Smatanova, I. (2013). Crystallographic analysis of new psychrophilic haloalkane dehalogenases: DpcA from Psychrobacter cryohalolentis K5 and DmxA from Marinobacter sp. ELB17. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 69(6), 683-688. https://doi.org/10.1107/S1744309113012979

Ugalde, J. A., Chang, B. S. W., & Matz, M. V. (2004). Evolution of coral pigments recreated. Science, 305(5689), 1433. https://doi.org/10.1126/science.1099597

Varriale, S., Cerullo, G., Antonopoulou, I., Christakopoulos, P., Rova, U., Tron, T., Fauré, R., Jütten, P., Piechot, A., Brás, J. L. A., Fontes, C. M. G. A., & Faraco, V. (2018). Evolution of the feruloyl esterase MtFae1a from Myceliophthora thermophila towards improved catalysts for antioxidants synthesis. Applied Microbiology and Biotechnology, 102(12), 5185-5196. https://doi.org/10.1007/s00253-018-8995-4

Vijgen, J., Abhilash, P. C., Li, Y. F., Lal, R., Forter, M., Torres, J., Singh, N., Yunus, M., Tian, C., Schäffer, A., &

Weber, R. (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environmental Science and Pollution Research, 18(2), 152-162. https://doi.org/10.1007/s11356-010-0417-9

Wijma, H. J., Floor, R. J., & Janssen, D. B. (2013). Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Current Opinion in Structural Biology, 23(4), 588-594. https://doi.org/10.1016/j.sbi.2013.04.008

Xu, X., Liu, M. Q., Huo, W. K., & Dai, X. J. (2016). Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution. Enzyme and Microbial Technology, 86, 59-66. https://doi.org/10.1016/j.enzmictec.2016.02.001

Yang, K. K., Wu, Z., & Arnold, F. H. (2019). Machine-learning-guided directed evolution for protein engineering. Nature Methods, 16(8), 687-694. https://doi.org/10.1038/s41592-019-0496-6

Yokoyama, S. (2002). Molecular evolution of color vision in vertebrates. Gene, 300(1–2), 69-78. https://doi.org/10.1016/S0378-1119(02)00845-4

Yokoyama, S., Tada, T., Zhang, H., & Britt, L. (2008). Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13480-13485. https://doi.org/10.1073/pnas.0802426105

Zulkifly, A. H., Roslan, D. D., Hamid, A. A. A., Hamdan, S., & Huyop, F. (2010). Biodegradation of low concentration of monochloroacetic acid-degrading Bacillus sp. TW1 isolated from terengganu water treatment and distribution plant. Journal of Applied Sciences, 10(22), 2940-2944. https://doi.org/10.3923/jas.2010.2940.2944

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る