リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Wall slip in primitive chain network simulations of shear startup of entangled polymers and its effect on the shear stress undershoot」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Wall slip in primitive chain network simulations of shear startup of entangled polymers and its effect on the shear stress undershoot

Masubuchi, Yuichi Vlassopoulos, Dimitris Ianniruberto, Giovanni Marrucci, Giuseppe 名古屋大学

2021.03

概要

In some recent experiments on entangled polymers of stress growth in the startup of fast shear flows, an undershoot in the shear stress is observed following the overshoot, i.e., before approaching the steady state. Whereas tumbling of the entangled chain was proposed to be at its origin, here, we investigate another possible cause for the stress undershoot, i.e., slippage at the interface between the polymer and solid wall. To this end, we extend the primitive chain network model to include slip at the interface between entangled polymeric liquids and solid walls with grafted polymers. We determine the slip velocity at the wall, and the shear rate in the bulk, by imposing that the shear stress in the bulk polymers is equal to that resulting from the polymers grafted at the wall. After confirming that the predicted results for the steady state are reasonable, we examine the transient behavior. The simulations confirm that slippage weakens the magnitude of the stress overshoot, as reported earlier. The undershoot is also weakened, or even disappears, because of a reduced coherence in molecular tumbling. Disentanglement of grafted chains from bulk ones, taking place throughout the stress overshoot region, does not contribute to the stress undershoot.

この論文で使われている画像

参考文献

[1] Bueche, F., and S. W. Harding, “New absolute molecular weight method for linear polymers,” Rubber Chem. Technol. 32(1), 99–106 (1959).

[2] Ferry, J. D., Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

[3] Graessley, W., Polymeric Liquids & Networks: Dynamics and Rheology (Garland Science, New York, 2008).

[4] Pearson, D., E. Herbolzheimer, N. Grizzuti, and G. Marrucci, “Transient behavior of entangled polymers at high shear rates,” J. Polym. Sci. B Polym. Phys. 29(13), 1589–1597 (1991).

[5] Pearson, D. S., A. D. Kiss, L. J. Fetters, and M. Doi, “Flow-induced birefringence of concentrated polyisoprene solutions,” J. Rheol. 33(3), 517–535 (1989).

[6] Osaki, K., T. Inoue, and T. Isomura, “Stress overshoot of polymer sol- utions at high rates of shear,” J. Polym. Sci. B Polym. Phys. 38(14), 1917–1925 (2000).

[7] Masubuchi, Y., and H. Watanabe, “Origin of stress overshoot under start-up shear in primitive chain network simulation,” ACS Macro Lett. 3(11), 1183–1186 (2014).

[8] Cao, J., and A. E. Likhtman, “Simulating startup shear of entangled polymer melts,” ACS Macro Lett. 4(12), 1376–1381 (2015).

[9] Masubuchi, Y., and H. Watanabe, “Stress-optical relationship in bead- spring simulations for entangled polymers under start-up shear flows,” Nihon Reoroji Gakkaishi 44(1), 65–68 (2016).

[10] Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

[11] Costanzo, S., Q. Huang, G. Ianniruberto, G. Marrucci, O. Hassager, and D. Vlassopoulos, “Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements,” Macromolecules 49(10), 3925–3935 (2016).

[12] Stephanou, P. S., T. Schweizer, and M. Kröger, “Communication: Appearance of undershoots in start-up shear: Experimental findings captured by tumbling-snake dynamics,” J. Chem. Phys. 146(16), 1–11 (2017).

[13] Auhl, D., J. Ramirez, A. E. Likhtman, P. Chambon, and C. Fernyhough, “Linear and nonlinear shear flow behavior of monodis- perse polyisoprene melts with a large range of molecular weights,” J. Rheol. 52(3), 801–835 (2008).

[14] Nafar Sefiddashti, M. H., B. J. Edwards, and B. Khomami, “Elucidating the molecular rheology of entangled polymeric fluids via comparison of atomistic simulations and model predictions,” Macromolecules 52(21), 8124–8143 (2019).

[15] Nafar Sefiddashti, M. H., B. J. Edwards, and B. Khomami, “Individual chain dynamics of a polyethylene melt undergoing steady shear flow,” J. Rheol. 59(1), 119–153 (2015).

[16] Nafar Sefiddashti, M. H., B. J. Edwards, and B. Khomami, “Evaluation of reptation-based modeling of entangled polymeric fluids including chain rotation via nonequilibrium molecular dynamics simu- lation,” Phys. Rev. Fluids 2(8), 083301 (2017).

[17] Nafar Sefiddashti, M., B. Edwards, and B. Khomami, “Individual molecular dynamics of an entangled polyethylene melt undergoing steady shear flow: Steady-state and transient dynamics,” Polymers 11(3), 476 (2019).

[18] Masubuchi, Y., G. Ianniruberto, and G. Marrucci, “Stress undershoot of entangled polymers under fast startup shear flows in primitive chain network simulations,” Nihon Reoroji Gakkaishi 46(1), 23–28 (2018).

[19] Stephanou, P., and M. Kröger, “Assessment of the tumbling-snake model against linear and nonlinear rheological data of bidisperse polymer blends,” Polymers 11(2), 376 (2019).

[20] Hatzikiriakos, S. G., “Wall slip of molten polymers,” Prog. Polym. Sci. 37(4), 624–643 (2012).

[21] Denn, M. M., “Extrusion instabilities and wall slip,” Annu. Rev. Fluid Mech. 33(1), 265–287 (2001).

[22] Drda, P. P., and S. Q. Wang, “Stick-slip transition at polymer melt/ solid interfaces,” Phys. Rev. Lett. 75(14), 2698–2701 (1995).

[23] Dao, T. T., and L. A. Archer, “Stick-slip dynamics of entangled polymer liquids,” Langmuir 18(7), 2616–2624 (2002).

[24] Migler, K. B., H. Hervet, and L. Leger, “Slip transition of a polymer melt under shear stress,” Phys. Rev. Lett. 70(3), 287–290 (1993).

[25] Brochard, F., and P. G. De Gennes, “Shear-dependent slippage at a polymer/solid interface,” Langmuir 8(12), 3033–3037 (1992).

[26] Pearson, J., and C. Petrie, On the melt-flow instability of extruded polymers, in Polymer Systems: Deformation and Flow, edited by R. Wetton and R. Whorlow (Macmillan, New York, 1965), pp. 163–187.

[27] Kazatchkov, I. B., and S. G. Hatzikiriakos, “Relaxation effects of slip in shear flow of linear molten polymers,” Rheol. Acta 49(3), 267–274 (2010).

[28] Ebrahimi, M., V. K. Konaganti, and S. G. Hatzikiriakos, “Dynamic slip of polydisperse linear polymers using partitioned plate,” Phys. Fluids 30(3), 030601 (2018).

[29] Hatzikiriakos, S. G., and N. Kalogerakis, “A dynamic slip velocity model for molten polymers based on a network kinetic theory,” Rheol. Acta 33(1), 38–47 (1994).

[30] Masubuchi, Y., J.-I. Takimoto, K. Koyama, G. Ianniruberto, G. Marrucci, and F. Greco, “Brownian simulations of a network of reptating primitive chains,” J. Chem. Phys. 115(9), 4387–4394 (2001).

[31] Masubuchi, Y., K. Furuichi, K. Horio, T. Uneyama, H. Watanabe, G. Ianniruberto, F. Greco, and G. Marrucci, “Primitive chain network simulations for entangled DNA solutions,” J. Chem. Phys. 131(11), 114906 (2009).

[32] Yaoita, T., T. Isaki, Y. Masubuchi, H. Watanabe, G. Ianniruberto, and G. Marrucci, “Primitive chain network simulation of elongational flows of entangled linear chains: Stretch/ orientation-induced reduction of monomeric friction,” Macromolecules 45(6), 2773–2782 (2012).

[33] Masubuchi, Y., G. Ianniruberto, and G. Marrucci, “Primitive chain network simulations for H-polymers under fast shear,” Soft Matter 16(4), 1056–1065 (2020).

[34] Masubuchi, Y., Y. Doi, and T. Uneyama, “Primitive chain network simulations for the interrupted shear response of entangled polymeric liquids,” Soft Matter 16(28), 6654–6661 (2020).

[35] Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, “Entanglement molecular weight and frequency response of sliplink networks,” J. Chem. Phys. 119(13), 6925–6930 (2003).

[36] Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, “Molecular simulations of the long-time behaviour of entangled poly- meric liquids by the primitive chain network model,” Model. Simul. Mater. Sci. Eng. 12(3), S91–S100 (2004).

[37] Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, “Quantitative comparison of primitive chain network simulations with literature data of linear viscoelasticity for polymer melts,” J. Nonnewton. Fluid Mech. 149(1–3), 87–92 (2008).

[38] Xu, F., M. M. Denn, and J. D. Schieber, “Stochastic chain simulation of wall slip in entangled polymer melts,” J. Rheol. 51(3), 451–464 (2007).

[39] Gay, C., “New concepts for the slippage of an entangled polymer melt at a grafted solid interface,” Eur. Phys. J. B 7(2), 251–262 (1999).

[40] Joshi, Y. M., A. K. Lele, and R. A. Mashelkar, “Molecular model for wall slip: Role of convective constraint release,” Macromolecules 34(10), 3412–3420 (2001).

[41] Kirk, J., M. Kröger, and P. Ilg, “Surface disentanglement and slip in a polymer melt: A molecular dynamics study,” Macromolecules 51(21), 8996–9010 (2018).

[42] Langeloth, M., Y. Masubuchi, M. C. Böhm, and F. Müller-plathe, “Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs,” J. Chem. Phys. 138(2013), 104907 (2013).

[43] Masubuchi, Y., M. Langeloth, M. C. Böhm, T. Inoue, and F. Müller-Plathe, “A multichain slip-spring dissipative particle dynam- ics simulation method for entangled polymer solutions,” Macromolecules 49(23), 9186–9191 (2016).

[44] Ianniruberto, G., G. Marrucci, and Y. Masubuchi, “Melts of linear polymers in fast flows,” Macromolecules 53(13), 5023–5033 (2020).

[45] Durliat, E., H. Hervet, and L. Leger, “Influence of grafting density on wall slip of a polymer melt on a polymer brush,” Europhys. Lett. 38(5), 383–388 (1997).

[46] Hatzikiriakos, S. G., “A slip model for linear polymers based on adhe- sive failure,” Int. Polym. Process. 8(2), 135–142 (1993).

[47] Kulicke, W. M., and R. Kniewske, “The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solu- tions,” Rheol. Acta 23(1), 75–83 (1984).

参考文献をもっと見る