リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Neuronal glutathione loss leads to neurodegeneration involving gasdermin activation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Neuronal glutathione loss leads to neurodegeneration involving gasdermin activation

HASHIMOTO Shoko 50632890 MATSUBA Yukio TAKAHASHI Mika KAMANO Naoko WATAMURA Naoto 60827351 SASAGURI Hiroki 10783053 TAKADO Yuhei 60593564 YOSHIHARA Yoshihiro 20220717 SAITO Takashi 90360552 SAIDO Takaomi C 滋賀医科大学 DOI:10.1038/s41598-023-27653-w

2023.01.20

概要

Accumulating evidence suggests that glutathione loss is closely associated with the progression of neurodegenerative disorders. Here, we found that the neuronal conditional-knockout (KO) of glutamyl-cysteine-ligase catalytic-subunit (GCLC), a rate-limiting enzyme for glutathione synthesis, induced brain atrophy accompanied by neuronal loss and neuroinflammation. GCLC-KO mice showed activation of C1q, which triggers engulfment of neurons by microglia, and disease-associated-microglia (DAM), suggesting that activation of microglia is linked to the neuronal loss. Furthermore, gasdermins, which regulate inflammatory form of cell death, were upregulated in the brains of GCLC-KO mice, suggesting the contribution of pyroptosis to neuronal cell death in these animals. In particular, GSDME-deficiency significantly attenuated the hippocampal atrophy and changed levels of DAM markers in GCLC-KO mice. Finally, we found that the expression of GCLC was decreased around amyloid plaques in AppNL-G-F AD model mice. AppNL-G-F mouse also exhibited inflammatory events similar to GCLC-KO mouse. We propose a mechanism by which a vicious cycle of oxidative stress and neuroinflammation enhances neurodegenerative processes. Furthermore, GCLC-KO mouse will serve as a useful tool to investigate the molecular mechanisms underlying neurodegeneration and in the development of new treatment strategies to address neurodegenerative diseases.

この論文で使われている画像

参考文献

1. Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regener. Res. 8, 2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009 (2013).

2. Guo, L., Tian, J. & Du, H. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J. Alzheimers Dis. 57, 1071–1086. https://doi.org/10.3233/jad-160702 (2017).

3. Cai, Q. & Tammineni, P. Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J. Alzheimers Dis. 57, 1087–1103. https://doi.org/10.3233/jad-160726 (2017).

4. Federico, A. et al. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci. 322, 254–262. https://doi.org/10.1016/j. jns.2012.05.030 (2012).

5. Singh, A., Kukreti, R., Saso, L. & Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules https:// doi.org/10.3390/molecules24081583 (2019).

6. Brown, G. C. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem. Soc. Trans. 35, 1119–1121. https://doi.org/10.1042/BST0351119 (2007).

7. Agostinho, P., Cunha, R. A. & Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 16, 2766–2778. https://doi.org/10.2174/138161210793176572 (2010).

8. Mosley, R. L. et al. Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin. Neurosci. Res. 6, 261–281. https://doi.org/10.1016/j.cnr.2006.09.006 (2006).

9. Obrador, E. et al. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants https://doi.org/10.3390/antiox9090901 (2020).

10. Mandal, P. K., Tripathi, M. & Sugunan, S. Brain oxidative stress: Detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 417, 43–48. https://doi.org/10.1016/j.bbrc.2011.11.047 (2012).

11. Mandal, P. K., Saharan, S., Tripathi, M. & Murari, G. Brain glutathione levels–a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol. Psychiatry 78, 702–710. https://doi.org/10.1016/j.biopsych.2015.04.005 (2015).

12. Weiduschat, N. et al. Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci. Lett. 570, 102–107. https://doi.org/10.1016/j.neulet.2014.04.020 (2014).

13. Weerasekera, A. et al. Motor cortex metabolite alterations in amyotrophic lateral sclerosis assessed in vivo using edited and non- edited magnetic resonance spectroscopy. Brain Res. 1718, 22–31. https://doi.org/10.1016/j.brainres.2019.04.018 (2019).

14. Andronesi, O. C. et al. Imaging neurochemistry and brain structure tracks clinical decline and mechanisms of ALS in patients. Front. Neurol. 11, 590573. https://doi.org/10.3389/fneur.2020.590573 (2020).

15. Kim, K. Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyo- trophic lateral sclerosis. Antioxidants https://doi.org/10.3390/antiox10071011 (2021).

16. Sian, J. et al. Glutathione-related enzymes in brain in Parkinson’s disease. Ann. Neurol. 36, 356–361. https://doi.org/10.1002/ana. 410360306 (1994).

17. Emir, U. E. et al. Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed. 24, 888–894. https://doi.org/10.1002/nbm.1646 (2011).

18. Feng, W. et al. Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration. Hum. Mol. Genet. 26, 1376– 1390. https://doi.org/10.1093/hmg/ddx040 (2017).

19. Fernandez-Fernandez, S. et al. Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol. 19, 52–61. https://doi.org/10.1016/j.redox.2018.08.003 (2018).

20. Colonna, M. & Brioschi, S. Neuroinflammation and neurodegeneration in human brain at single-cell resolution. Nat. Rev. Immunol. 20, 81–82. https://doi.org/10.1038/s41577-019-0262-0 (2020).

21. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276-1290 e1217. https://doi.org/10.1016/j.cell.2017.05.018 (2017).

22. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706. https://doi.org/10. 1038/s41593-020-0624-8 (2020).

23. Deczkowska, A. et al. Disease-associated microglia: A universal immune sensor of neurodegeneration. Cell 173, 1073–1081. https:// doi.org/10.1016/j.cell.2018.05.003 (2018).

24. Fujita, K. et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep. 6, 31895. https://doi.org/10.1038/srep31895 (2016).

25. Sala Frigerio, C. et al. The major risk factors for Alzheimer’s disease: Age, sex, and genes modulate the microglia response to abeta plaques. Cell Rep. 27, 1293-1306 e1296. https://doi.org/10.1016/j.celrep.2019.03.099 (2019).

26. Walker, D. G., Lue, L. F. & Beach, T. G. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol. Aging 22, 957–966. https://doi.org/10.1016/s0197-4580(01)00306-2 (2001).

27. Guedes, J. R., Lao, T., Cardoso, A. L. & El Khoury, J. Roles of microglial and monocyte chemokines and their receptors in regulating Alzheimer’s disease-associated amyloid-beta and tau pathologies. Front. Neurol. 9, 549. https://doi.org/10.3389/fneur.2018.00549 (2018).

28. Cudaback, E., Yang, Y., Montine, T. J. & Keene, C. D. APOE genotype-dependent modulation of astrocyte chemokine CCL3 pro- duction. Glia 63, 51–65. https://doi.org/10.1002/glia.22732 (2015).

29. Marciniak, E. et al. The Chemokine MIP-1alpha/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci. Rep. 5, 15862. https://doi.org/10.1038/srep15862 (2015).

30. Xia, M. Q., Bacskai, B. J., Knowles, R. B., Qin, S. X. & Hyman, B. T. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: In vitro ERK1/2 activation and role in Alzheimer’s disease. J. Neuroimmunol. 108, 227–235. https://doi.org/10.1016/s0165-5728(00)00285-x (2000).

31. Clarner, T. et al. CXCL10 triggers early microglial activation in the cuprizone model. J. Immunol. 194, 3400–3413. https://doi.org/ 10.4049/jimmunol.1401459 (2015).

32. Rappert, A. et al. CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J. Neurosci. 24, 8500– 8509. https://doi.org/10.1523/JNEUROSCI.2451-04.2004 (2004).

33. Krauthausen, M. et al. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’s disease model. J. Clin. Investig. 125, 365–378. https://doi.org/10.1172/JCI66771 (2015).

34. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716. https:// doi.org/10.1126/science.aad8373 (2016).

35. Fraser, D. A., Pisalyaput, K. & Tenner, A. J. C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J. Neurochem. 112, 733–743. https://doi.org/10.1111/j.1471-4159.2009. 06494.x (2010).

36. Dalakas, M. C., Alexopoulos, H. & Spaeth, P. J. Complement in neurological disorders and emerging complement-targeted thera- peutics. Nat. Rev. Neurol. 16, 601–617. https://doi.org/10.1038/s41582-020-0400-0 (2020).

37. Schmued, L. C., Stowers, C. C., Scallet, A. C. & Xu, L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degen- erating neurons. Brain Res. 1035, 24–31. https://doi.org/10.1016/j.brainres.2004.11.054 (2005).

38. Hashimoto, S. et al. Author correction: Tau binding protein CAPON induces tau aggregation and neurodegeneration. Nat. Com- mun. 10, 2964. https://doi.org/10.1038/s41467-019-10990-8 (2019).

39. Matejuk, A. & Ransohoff, R. M. Crosstalk between astrocytes and microglia: An overview. Front. Immunol. 11, 1416. https://doi. org/10.3389/fimmu.2020.01416 (2020).

40. Liddelow, S. A., Marsh, S. E. & Stevens, B. Microglia and astrocytes in disease: Dynamic duo or partners in crime?. Trends Immunol.

41, 820–835. https://doi.org/10.1016/j.it.2020.07.006 (2020). 41. Saito, T. et al. Single app knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663. https://doi.org/10.1038/nn. 3697 (2014).

42. Izumi, H. et al. Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in App(NL-G-F/ NL-G-F) knock-in mice. Neuropharmacology 168, 108026. https://doi.org/10.1016/j.neuropharm.2020.108026 (2020).

43. Uruno, A. et al. Nrf2 suppresses oxidative stress and inflammation in app knock-in Alzheimer’s disease model mice. Mol. Cell. Biol. https://doi.org/10.1128/MCB.00467-19 (2020).

44. Olabarria, M., Noristani, H. N., Verkhratsky, A. & Rodriguez, J. J. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission?. Mol. Neurodegener. 6, 55. https://doi.org/10.1186/1750-1326-6-55 (2011).

45. Saing, T. et al. Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alz- heimer’s disease and its implication in the pathophysiology of the disease process. BBA Clin. 6, 38–44. https://doi.org/10.1016/j. bbacli.2016.05.006 (2016).

46. Sobue, A. et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer’s disease. Acta Neuropathol. Commun. 9, 1. https://doi.org/10.1186/s40478-020-01099-x (2021).

47. Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976-991 e919. https://doi. org/10.1016/j.cell.2020.06.038 (2020).

48. Merlini, M. et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 101, 1099-1108 e1096. https://doi.org/10.1016/j.neuron.2019.01.014 (2019).

49. Shih, A. Y. et al. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J. Neurosci. 23, 3394–3406 (2003).

50. Vargas, M. R., Pehar, M., Cassina, P., Beckman, J. S. & Barbeito, L. Increased glutathione biosynthesis by Nrf2 activation in astro- cytes prevents p75NTR-dependent motor neuron apoptosis. J. Neurochem. 97, 687–696. https://doi.org/10.1111/j.1471-4159.2006. 03742.x (2006).

51. Van Laer, L. et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genet. 20, 194–197. https:// doi.org/10.1038/2503 (1998).

52. de Beeck, K. O., Van Laer, L. & Van Camp, G. DFNA5, a gene involved in hearing loss and cancer: A review. Ann. Otol. Rhinol. Laryngol. 121, 197–207. https://doi.org/10.1177/000348941212100310 (2012).

53. Van Rossom, S. et al. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae. Front. Oncol. 2, 77. https://doi.org/10.3389/fonc.2012.00077 (2012).

54. Van Rossom, S., de Op Beeck, K., Hristovska, V., Winderickx, J. & Van Camp, G. The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Front. Cell Neurosci. 9, 231. https://doi.org/10.3389/fncel.2015. 00231 (2015).

55. Cho, K. Emerging roles of complement protein C1q in neurodegeneration. Aging Dis. 10, 652–663. https://doi.org/10.14336/AD. 2019.0118 (2019).

56. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178. https://doi.org/10. 1016/j.cell.2007.10.036 (2007).

57. Farber, K. et al. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J. Neurosci. Res. 87, 644–652. https://doi.org/10.1002/jnr.21875 (2009).

58. Veerhuis, R. et al. Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiol. Dis. 19, 273–282. https://doi.org/10.1016/j.nbd.2005.01.005 (2005).

59. Xie, H. et al. Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 110, 7904–7909. https://doi.org/10.1073/pnas.1217938110 (2013).

60. Takamura, R. et al. Modality-specific impairment of hippocampal CA1 neurons of Alzheimer’s disease model mice. J. Neurosci. 41, 5315–5329. https://doi.org/10.1523/JNEUROSCI.0208-21.2021 (2021).

61. Zhang, C., Rodriguez, C., Spaulding, J., Aw, T. Y. & Feng, J. Age-dependent and tissue-related glutathione redox status in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 28, 655–666. https://doi.org/10.3233/JAD-2011-111244 (2012).

62. Resende, R. et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic. Biol. Med. 44, 2051–2057. https://doi.org/10.1016/j.freeradbiomed.2008.03.012 (2008).

63. Yang, H. et al. Glutathione-mimetic D609 alleviates memory deficits and reduces amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model. NeuroReport 29, 833–838. https://doi.org/10.1097/WNR.0000000000001040 (2018).

64. Liu, Y. et al. Supplementation with gamma-glutamylcysteine (gamma-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD. Neurochem. Int. 144, 104931. https://doi.org/10.1016/j.neuint. 2020.104931 (2021).

65. Hongo, N. et al. Astaxanthin ameliorated parvalbumin-positive neuron deficits and Alzheimer’s disease-related pathological progression in the hippocampus of App(NL-G-F/NL-G-F) Mice. Front. Pharmacol. 11, 307. https://doi.org/10.3389/fphar.2020. 00307 (2020).

66. Watamura, N. et al. Somatostatin-evoked Abeta catabolism in the brain: Mechanistic involvement of alpha-endosulfine-KATP channel pathway. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01368-8 (2021).

67. Mitsui, S., Saito, M., Mori, K. & Yoshihara, Y. A transcriptional enhancer that directs telencephalon-specific transgene expression in mouse brain. Cereb. Cortex 17, 522–530. https://doi.org/10.1093/cercor/bhj177 (2007).

68. Saido, T. C., Yamao-Harigaya, W., Iwatsubo, T. & Kawashima, S. Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci. Lett. 215, 173–176. https://doi.org/10.1016/0304-3940(96)12970-0 (1996).

69. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362. https://doi.org/10.1038/nmeth.1322 (2009).

参考文献をもっと見る