リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ライグラスいもち病菌のコムギに対する非病原力遺伝子の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ライグラスいもち病菌のコムギに対する非病原力遺伝子の解析

Jiang, Yushan 蒋, 宇珊 ショウ, ウサン 神戸大学

2020.09.25

概要

Blast is one of the most devastating plant diseases worldwide. Pyricularia oryzae, a causal agent of blast disease of gramineous plants, consists of several subgroups or pathotypes, each of which is pathogenic on a plant genus, e.g., Oryza (including rice), Setaria (including foxtail millet), Eleusine (including finger millet), Lolium (including ryegrass), or Triticum (wheat). The specificity between these pathotypes and their hosts is governed by gene-for-gene interactions between fungal avirulence genes and their corresponding resistance genes. In the present study, distribution of avirulence genes in Lolium isolates were examined.

 PWT3 and PWT7 are avirulence genes identified in an Avena isolate and correspond to Rwt3 and Rwt7 in wheat. All Lolium isolates carried PWT3 homologs, while a half of them (prg isolates from U.S.) carried PWT7 homologs. These results suggest that the incompatibility between the prg isolates from U.S. and common wheat is conditioned by two gene pairs, PWT3-Rwt3 and PWT7-Rwt7.

 Rmg8 is a promising gene for resistance to the wheat blast fungus found in common wheat cultivar ‘S-615’. To predict the durability of Rmg8, stability of its corresponding avirulence gene, AVR-Rmg8, was examined. The first checkpoint for evaluating the stability was the genomic structure of the AVR-Rmg8 locus. Analyses of the AVR-Rmg8 locus of B71, a highly virulent Triticum isolate found in Bolivia revealed that AVR-Rmg8 was located in a gene-rich and repeat-poor region. This result suggests that AVR-Rmg8 is not so easily lost as AVR-Pita or other avirulence genes located in repeat-rich regions. This implies that Rmg8 is relatively stable compared with Pita or other resistance genes corresponding to avirulence genes in repeat-rich regions.

 The second checkpoint for evaluating the stability was distribution and polymorphisms of AVR-Rmg8 in a fungal population. However, the population of the wheat blast fungus is new, and has scarcely accumulated polymorphisms. Therefore, we examined distribution and polymorphisms of AVR-Rmg8 in the population of Lolium isolates, a close relative of Triticum isolates. Analysis of AVR-Rmg8 distribution showed that all Lolium carried its homologs. Based on the size of Southern signals, these homologs were divided into three types, eL1, eL2, and eL3. A phylogenetic analysis suggested that the eL1 and eL2 types in Lolium isolates were close to the eII type in Triticum isolate. The complementation test with the transformants carrying the eL1 and eL2 transgenes indicated that both of them were functional. These results suggest that AVR-Rmg8 is a conservative gene widely distributed in populations of Triticum and Lolium isolates.

 Completely durable resistance genes should be those corresponding to effector genes that are indispensable for pathogen’s survival. Regarding Rmg8, however, this was not the case. We found three isolates carrying eL3 were virulent on S-615 carrying Rmg8. AVR-Rmg8 in these isolates was disrupted by an insertion of retrotransposon Pyret into its ORF. Nevertheless, these isolates have survived in nature, suggesting that AVR-Rmg8 is not indispensable for the survival of Pyricularia isolates. Taken together, there is a possibility that, in future, Rmg8 will be defeated by a new race of the wheat blast fungus that lost function of AVR-Rmg8.

この論文で使われている画像

参考文献

Anh, V. L., Anh, N. T., Tagle, A. G., Vy, T. T. P., Inoue, Y., Takumi, S., Chuma, I., and Tosa, Y. 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105:1568–1572.

Anh, V., L., Inoue, Y., Asuke, S., Vy, T. T. P., Anh, N. T., Wang, S., Chuma, I., and Tosa, Y. 2018. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Mol. Plant Pathol. 19:1252-1256.

Antonovics, J., Boots, M., Ebert, D., Koskella, B., Poss, M., and Sadd, B. M. 2012. The origin of specificity by means of natural selection: evolved and Non-host resistance in host- pathogen interactions. Evolution 6:1-9.

Asuke, S., Tanaka, M., Hyon, G., Inoue, Y., Vy, T. T. P., Niwamoto, D., Nakayashiki, H., and Tosa, Y. 2019. Evolution of an Eleusine-Specific subgroup of Pyricularia oryzae through a gain of an avirulence gene

Bhattacharya, R. and Mondal, H. 2017. Fungus sees wheat crops in Bengal go up in flames as govt controls its spread. http://www.hindustantimes.com/india-news/fungus-sees-wheat-crops-in-be ngal-go-up-in-flames-as-govt-controls-its-spread/story-ok3NRwnvzR3InZw FnmZcHL.html.

Callaway, E. 2016. Devastating wheat fungus appears in Asia for first time. Nature 532: 421–422.

Castroagudín V. L., Ceresini, P. C., de Oliveira, S. C., Reges, J. T. A., Maciel, J. L. N., Bonato, A. L. V., Dorigan, A. F., and McDonald, B. A. 2015. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 105:284–294.

Ceresini, P. C., Castroagudín, V. L., Rodrigues, F. Á., Rios, J. A., Aucique-Pérez, C. E., Moreira, S. I., Alves, E., Croll, D., and Maciel, J. L. N. 2018. Wheat blast: Past, present, and future. Annu. Rev. Phytopathol. 56:427-456.

Chuma, I., Zhan, S. W., Asano, S., Nga, N. T. T., Vy, T. T. P., Shirai, M., Ibaragi, K., and Tosa, Y. 2010. PWT1, an avirulence gene of Magnaporthe oryzae tightly linked to the rDNA locus, is recognized by two staple crops, common wheat and barley. Phytopathology 100: 436-443.

Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., Yoshida, K., Terauchi, R., Fujita, Y., Nakayashiki, H., Valent, B., and Tosa, Y. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 7: e1002147.

Cruz, C.D. and Valent, B. 2017. Wheat blast disease: danger on the move Trop. Plant Pathol. 42: 210-222.

Dangl, J.L. 1994. Bacterrial Pathogenesis of Plant and Animal: Molecular and cellular Muchanisms. Springer- Verlag, Heidelberg, Gemany. 192: 99-118.

Dong, S., Raffaele, S., Kamoun, S. 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 35:57-65.

Fame, M. L. 2002. Pyricularia grisea isolates causing gray leaf spot on perennial ryegrass (Lolium perenne) in the United States: Relationship to P. grisea isolates from other host plants. Phytopathology 92:245-254.

Farman , M. L. 2007. Telomeres in the rice blast fungus: the world of the end as we know it. FEMS Microbiol. Lett. 273:125-132.

Farmn, M.L., Peterson, G., Chen, L. Starnes, J., Valent, B., Bachi, P., Murdock, L., Hershaman, D., Pedley, K., Fernandes, J.M. and Bavaresco, J. 2017 The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis. 101, 684-692.

Greer, C. A., and Webster, R. K. 2001. Occurrence, distribution, epidemiology, dultivar reaction, and management of rice blast disease in Calfornia. Plant Dis. 85:1096-1102.

Harmon, P., Rane, K., Ruhl, G., and Latin, R. 2000. First report of gray leaf spot on perennial ryegrass in Indiana. Plant Dis. 84:492.

He, X., Kabir, M. R., Roy, K, K., Anwar, M.B., Xu, K.,Marza, F., Odilbekov, F., Chawade, A., Duveiller, E., Huttner, E., Singh, P. K. 2020. OTL mapping for field resistance to whea blast in the Caninde#1/Alondrap population

Heath, M.C. 1981. A generalized concept of host-parasite specificity. Phytopathol. 71: 1121-1123.

Ikeda, K.,Nakayashiki, H., Kataoka, T., Tamba, H., Hashimoto, Y. 2002. Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexal cycle in the nutural field context. Mol Microbio. 45: 1355-1364.

Inoue, Y., Mori, R., Takahashi, Y., Kiguchi, S., Enomoto, T., Chuma, I., and Tosa, Y. 2013. Identification and molecular mapping of a wheat gene for resistance to an unadapted isolate of Colletotrichum cereale. Phytopathology 103:575-582.

Inoue, K., Kitaoka, H., Park, P., and Ikeda, K. 2016. Novel aspects of hydrophobins in wheat isolate of Magnaporthe oryzae: Mpg1, but not Mhp1, is essential for adhesion and pathogenicity. J. Gen. Plant Pathol. 82:18-28.

Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh, V. L., Cumagun, C. J. R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T., Valent, B., Farman, M., and Tosa, Y. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357: 80-83.

Islam, M. T., Croll, D., Gladieux, P., Soanes, D. M., Persoons, A., Bhattacharjee, P., Hossain, M. S., Gupta, D. R., Rahman, M. M., Mahboob, M. G., Cook, N., Salam, M. U., Surovy, M. Z., Sancho, V. B., Maciel, J. L. N., NhaniJúnior, A., Castroagudín, V. L., de Assis Reges, J. T., Ceresini, P. C., Ravel, S., Kellner, R., Fournier, E., Tharreau, D., Lebrun, M-H., McDonald, B. A., Stitt, T., Swan, D., Talbot, N. J., Saunders, D. G. O., Win, J., and Kamoun, S. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14:84.

Joshi, R. K., and Nayak, S. 2010 Gene pyramiding-A broad spectrum techniqu for developing durable stress resistance in crops. Biotechnology and Molecular Biology Review 5: 51-60.

Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D., Roy, S. G., Schena, L., Zambounis, A., Panabieres, F., Cahill, D., Ruocco, M., Figueiredo, A., Chen, X.-R., Hulvey, J., Stam, R., Lamour, K., Gijzen, M, Tyler, R. M., Grunwald, N. J., Mukhtar, M. S., Tome, D. F. A., Tor, M., Ackerveken, G. V. D., Mcdowell, J., Daayf, F., Fry, W. E., Lindqvist-Kreuze, H., Meijer, H. J. G., Petre, B., Ristaino, J., Yoshida, K., Birch, P. R. J., and Govers, F. 2015. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 16:413–434.

Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S., and Mori, N. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J. Gen. Plant Pathol. 66: 30–47.

Kato, H., Yamamoto, M., Ymaguchi-ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S., and Mori, N. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J. Gen. Plant Pathol. 66: 30-47.

Keller, B., Feuillet, C., and Messmer, M. 2000. Genetics of disease resistance, basic concepts and application in resistance breeding. In: Mechanisms of resistance to plant disease. A. Slusarenko, R. S. S. Fraser, and C. van Loon, eds. Dordrech, the Nethrelands, Kluwer Academic Publisher. 101-160.

Klaubauf, S., Tharreau, D., Fournie, E., Groenewald, J. Z., Crous, P. W., de Vries, R. P., and Lebrun, M. H. 2014. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud. Mycol. 79:85-120.

Kumar, S., Stecher, G., Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis versin 7.0 for bigger datasets. Mol. 33:1870-1874.

Kusaba, M., Nakayashiki, H., and Mayama, S. 2000. Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross beween islates from wheat and foxtail millet. Phytopathol. 90: 1060-1067.

Li, W., Zhu, Z., Chen, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., Zhou, X., Zhu, X., Chen, Z., Wang, J., Zhao, W., Ma, B., Qin, P., Chen, W., Wang, Y., Liu, J., Wng, W., Li, P., Wang, J., Zhu, L., LI, S., and Chen, X. 2017. A natural allele of a transcripion factor in rice confers broad-spectrum blast resistance.

Lucas, J.A. 1998. Plant Pathology and Plant Pathogens, 3rd ed. Blackwell Science. Chapter 1, 3, 9: 5-265.

Malaker, P. K., Barma, N. C. D., Tiwari, T. P., Collis, W. J., Duveiller, E., Singh, P. K., Joshi, A. K., Singh, R. P., Braun, H. -J., Peterson, G. L., Pedley, K. F., Farman, M. L., and Valent, B. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis 100:23-30.

Melania, F., Figueroa, M., Kim, E., Hammond-k., K. E., and Solomon, P. S. 2017. A review of wheat diseases - a field perspective. Mol.Plant Pathol. DOI: 10.1111/mpp.12618.

Murakami, J., Tosa, Y., Kataoka, T., Tomita, R., Kawasaki, J., Chuma, I., Swsumi, Y., Kusaba, M., Nakayashiki, H., and Mayama, S. 2000. Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross beween islates from wheat and foxtail millet. Phytopathol. 90: 1060-1067.

Nakayashiki, H., Kiyotomi, K., Tosa, Y., and Mayama, S. 1999. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 155:693-703.

Nakayashiki, H., Matsuo, H., Chuma, I., Ikeda, K., Betsuyaku, S., Kusaba, M., Tosa, Y., and Mayama, S. 2001. Pyret, a Tys/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Research. 20:4106-4113.

Nga, N. T. T., Hau, V. T. B., and Tosa, Y. 2009. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52:801-809.

Oh, H. S., Tosa, Y., Takabayashi, N., Nakagawa, S., Tomita, R., Don, L. D., Kusaba, M., Nakayashiki, H., and Mayam, S. 2003. Characterization of an Avena isolates of Magnaporthe grisea and identification of a locus conditioning its specificity on oat. Can. J. Bot. 80:1088-1095.

Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G., and Valent, B. 2000. A telemetric avirulence gen determines efficacy or the rice blast resistance gene Pi-ta. Plant Cell 12: 2019-2032.

Orlandi, E.W., Hutcheson, S. W., and Baker, C. J. 1992. Early physiological-responses associated with race-specific recognition in soybean leaf tissue and cell-suspensions treated with Pseudomonas syringe pv. glycinea. Physiol. Mol. Plant Pathol. 40: 173-180.

Ou, S. H. 1985. Rice Diseases. Commonwealth Agricultura Bureaux, Slough, Uk. ), pp. 109-201.

Seidl, M. F., and Thomm, B. P. H. J. 2014. Sex or no sex: evolutionary adaptation occurs regardless. BioEssays 36:335-345.

Soanes, D., Ryder, L. S., Islam, M. T., and Talbot, N. J. 2017. Genome assemblies of Magnaporthe oryzae isolated from Bangladesh in 2016 and 2017. figshare https://doi.org/10.6084/m9.figshare.5236381.v1.

Sweigard, J. A., Carrol, A. M., Kang, S., Farral, L., Chumley, F. G., and Valent, B. 1995. Identification, cloning and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7: 1221-1233.

Tagle, A. G., Chuma, I., and Tosa, Y. 2015. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495–499.

Takabayashi, N., Tosa, Y., Oh, H.S., and Mayam, S. 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathol. 92: 1182-1188.

Thomopson, J. D., Higgins, D. G., and Gibson, T. J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment throuth sequence weighting, position-sepecific gap penalties and weight matrix choice. Nuclec Acids Research 22:4673-4680.

Tosa, Y., and Chuma, I. 2014. Classification and parasitic specialization of blast fungi. J. Gen. Plant Pathol. 80:202-209.

Tosa, Y., Hirata, K., Tamba, H., Nakagawa, S., Chuma, I., Isobe,C., Osue, J., Urashima, A.S., Don, L.D., Kusaba, M., Nakayashi, H., Tanaka, A., Tani, T., Mori, N., and Mayama, S. 2004. Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species- specific pathotypes of the blast fungus. Phytopathology 94: 454–462.

Tosa, Y., Osue, J., Eto, Y., Oh, H. S., Nakayashiki, H., Mayama, S., and Leong, S. A. 2005. Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae. Mol. Plant Microbe Interact. 18:1148–1160.

Tosa, Y., uddin, W., Viji, G., Kang, S., Mayama, S. 2007. Comparative genetic analysis of Magnaporthe oryzae isolates causing gray leaf spot of perennial ryegrass turf in the United States and Japan. Plant Dis. 91:517-524.

Tosa, Y., Inoue, Y., Trinh, T. P. V., and Chuma, I. 2016. Genetic and molecular analyses of the incompatibility between Lolium isolates of Pyricularia oryzae and wheat. Physiol. Mol. Plant Pathol. 95:84-86.

Uddin, W., G. Viji, and L. Stowell. 2002. First report of gray leaf spot on perennial ryegrass turf in California. Plant Dis. 86: 85.

Urashima, A. S., Igarashi, S., and Kato, H. 1993. Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis. 77:1211–1216.

Viji, G., Wu, B., Kang, S., Uddin, W., and Huff, D. R. 2001. Pyricularia grisea causing gray leaf spot of perennial ryegrass turf: population structure and host specificity. Plant Dis. 85:817-826.

Vy, T. T. P., Hyon, G-S., Nga, N. T. T., Inoue, Y., Chuma, I., and Tosa, Y. 2014. Genetic analysis of host-pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. J. Gen. Plant Pathol. 80:59-65. Genetic analysis of host-pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. J. Gen. Plant Pathol. 80:59-65.

Wang, S., Asuke, S., Vy, T. T. P, Inoue, Y., Chuma, I., Win, J., Kato, K., and Tosa, Y. 2018. A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology 0:1-8.

Wsser, R. J., Sun, Q., Hulbert, S. H., Kresovich, S., and Nelson, R. J. 2005. Identification and characterization of reions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169: 2277-2293.

Yoshida, K., Saunders, D. G., Mitsuoka, C., Natsume, S., Kosugi, S., Saitoh, H., Inoue, Y., Chuma, I., Tosa, Y., Cano, L.M., Kamoun, S., and Terauchi, R. 2016. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics 17:370.

Zeigler, R. S., Leong, S. A., and Teng, P. S. 1994. Rice Blast Disease. Wallingford: CAB International 1-626.

Zhang, N., Luo, J., Rossman, A. Y., Aoki, T., Chuma, I., Crous, P. W., Dean, R., de Vries, R. P., Donofrio, N., Hyde, K. E., Lebrun, M. H., Talbot, N. J., Tharreau, D., Tosa, Y., Valent, B., Wang, Z., and Xu, J. R. 2016. Genetic names in Magnaporthales. IMA fungus 7:155-159.

参考文献をもっと見る