リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Uniform construction of non-singular ternary and quaternary homogeneous forms violating the local-global principle (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Uniform construction of non-singular ternary and quaternary homogeneous forms violating the local-global principle (本文)

平川, 義之輔 慶應義塾大学

2020.09.21

概要

In number theory, rational points on algebraic varieties have been studied by many people from the time of Diophantus of Alexandria. In particular, it is an important problem to determine whether a given algebraic variety has a rational point or not. It is obvious that an algebraic variety has no rational points if it has no local points. However, it is a very deep problem to determine whether an algebraic variety with local points has a rational point or not. In fact, many SPORADIC examples of algebraic varieties are known to have local points but no rational points, i.e., violate the local-global principle. In this thesis, we give two kinds of conjectural but UNIFORM constructions of algebraic varieties which violate the local-global principle. More precisely, our UNIFORM construction of algebraic varieties of specified dimension means an algorithm to obtain a non-singular projective hypersurface of the projective space PN of every sufficiently large degree n 1 which violates the local-global principle (N = 3 or 4 in this thesis).

In the first part of this thesis, we construct a family of non-singular curves of odd degree n > 3 which violate the local-global principle under a certain mild hypothesis on the degree n. In fact, we conjecture that EVERY odd integer n > 3 satisfies our hypothesis, and we prove that our construction actually produces non-singular curves which violate the local-global principle for at least 90% (if ordered by heights) of the odd degrees n > 3. Moreover, for each fixed n, our construction gives infinitely many algebraic curves of degree n which are not geometrically isomorphic to each other. Our construction gives a vast generalization of Fujiwara’s quintic curve (1972).

The contents of the first part are based on the joint work [28] with Yosuke Shimizu, and the author contributed to the major part including the formulations of the theorems and the details of their proofs.

In the second part of this thesis, for every odd prime number p > 3 such that p ≡ 3 (mod 4), we construct a family of non-singular projective surfaces of degrees n = (p −1)/2 which violate the local-global principle. In fact, we construct non-singular projective surfaces of both GENERAL odd and even degrees n ≥ 3 which violate the local-global principle under a certain mild hypothesis that the arithmetic progression {1 + nr}r∈N contains a sufficiently small prime number. Our construction gives a vast generalization of (modified) Swinnerton-Dyer’s cubic surface (1962). The contents of the second part is based on [26] and its generalization.

Although there is a vast literature on the violation of the local-global principle, there is no known such a uniform construction of non-singular homogeneous forms violating the local-global principle before the results in this thesis.

参考文献

[1] W. Aitken and F. Lemmermeyer, Counterexamples to the Hasse principle, Amer. Math. Monthly 118 (2011), no. 7, 610–628, DOI 10.4169/amer.math.monthly.118.07.610. MR2826452

[2] N. C. Ankeny, E. Artin, and S. Chowla, The class-number of real quadratic number fields, Ann. of Math. (2) 56 (1952), 479–493, DOI 10.2307/1969656. MR0049948

[3] P. Barrucand and H. Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields, J. Number Theory 2 (1970), 7–21, DOI 10.1016/0022-314X(70)90003-X. MR249398

[4] P. Barrucand and S. Louboutin, Majoration et minoration du nombre de classes d’id´eaux des corps r´eels purs de degr´e premier, Bull. London Math. Soc. 25 (1993), no. 6, 533–540, DOI 10.1112/blms/25.6.533 (French, with French summary). MR1245078

[5] B. J. Birch, Forms in many variables, Proc. Roy. Soc. London Ser. A 265 (1961/62), 245–263, DOI 10.1098/rspa.1962.0007. MR150129

[6] E. Bombieri, Counting points on curves over finite fields (d’apr`es S. A. Stepanov), S´eminaire Bour- baki, 25`eme ann´ee (1972/1973), Exp. No. 430, Springer, Berlin, 1974, pp. 234–241. Lecture Notes in Math., Vol. 383. MR0429903

[7] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Sym- bolic Comput. 24 (1997), no. 3-4, 235–265, DOI 10.1006/jsco.1996.0125. Computational algebra and number theory (London, 1993). MR1484478

[8] A. Bremner, Some cubic surfaces with no rational points, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 2, 219–223, DOI 10.1017/S0305004100055055. MR0485683

[9] A. Bremner, D. J. Lewis, and P. Morton, Some varieties with points only in a field extension, Arch. Math. (Basel) 43 (1984), no. 4, 344–350, DOI 10.1007/BF01196658. MR802310

[10] T. D. Browning, How often does the Hasse principle hold?, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 89–102. MR3821168

[11] T. Browning and R. Heath-Brown, Forms in many variables and differing degrees, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 2, 357–394, DOI 10.4171/JEMS/668. MR3605019

[12] T. Browning, P. Le Boudec, and Will Sawin, The Hasse principle for random Fano hypersurfaces (2020), available at arXiv:2006.02356.

[13] J. W. S. Cassels, The arithmetic of certain quartic curves, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), no. 3-4, 201–218, DOI 10.1017/S0308210500013779. MR807702

[14] J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika 13 (1966), 111–120, DOI 10.1112/S0025579300003879. MR0211966

[15] S. Chowla, On the least prime in an arithmetical progression, J. Indian Math. Soc. 1 (1934), no. 2, 1–3.

[16] H. Cohen, Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, vol. 239, Springer, New York, 2007. MR2312337

[17] J.-L. Colliot-Th´el`ene and B. Poonen, Algebraic families of nonzero elements of Shafarevich- Tate groups, J. Amer. Math. Soc. 13 (2000), no. 1, 83–99, DOI 10.1090/S0894-0347-99-00315-X. MR1697093

[18] J.-L. Colliot-Th´el`ene and P. Swinnerton-Dyer, Hasse principle and weak approximation for pen- cils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49–112, DOI 10.1515/crll.1994.453.49. MR1285781

[19] K. Conrad, Selmer’s example, available at https://kconrad.math.uconn.edu/blurbs/ gradnumthy/selmerexample.pdf.

[20] T. W. Cusick, Lower bounds for regulators, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 63–73, DOI 10.1007/BFb0099441. MR756083

[21] D. A. Cox, Primes of the form x2 + ny2, 2nd ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013. Fermat, class field theory, and complex multiplication. MR3236783

[22] R. Dedekind, Ueber die Anzahl der Idealklassen in reinen kubischen Zahlk¨orpern, J. Reine Angew. Math. 121 (1900), 40–123, DOI 10.1515/crll.1900.121.40 (German). MR1580516

[23] A. Fr¨ohlich, Local fields, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 1–41. MR0236145

[24] M. Fujiwara, Hasse principle in algebraic equations, Acta Arith. 22 (1972/73), 267–276, DOI 10.4064/aa-22-3-267-276. MR0319895

[25] M. Fujiwara and M. Sudo, Some forms of odd degree for which the Hasse principle fails, Pacific J. Math. 67 (1976), no. 1, 161–169. MR0429737

[26] Y. Hirakawa, Counterexamples to the local-global principle associated with Swinnerton-Dyer’s cubic form (2019), to appear in Rocky Mountain J. Math., available at arXiv:1912.04620.

[27] , Primes of the form X3 + NY 3 and a family of non-singular plane curves which violate the local-global principle (2020), available at arXiv:2007.11425.

[28] Y. Hirakawa and Y. Shimizu, Counterexamples to the local-global principle for non-singular plane curves and a cubic analogue of Ankeny-Artin-Chowla-Mordell conjecture (2019), to appear in Proc. Amer. Math. Soc.

[29] D. R. Heath-Brown, Cubic forms in ten variables, Proc. London Math. Soc. (3) 47 (1983), no. 2, 225–257, DOI 10.1112/plms/s3-47.2.225. MR703978

[30] , Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), no. 2, 265–338, DOI 10.1112/plms/s3-64.2.265. MR1143227

[31] , Primes represented by x3 + 2y3, Acta Math. 186 (2001), no. 1, 1–84, DOI 10.1007/BF02392715. MR1828372

[32] D. R. Heath-Brown and B. Z. Moroz, Primes represented by binary cubic forms, Proc. London Math. Soc. (3) 84 (2002), no. 2, 257–288, DOI 10.1112/plms/84.2.257. MR1881392

[33] , On the representation of primes by cubic polynomials in two variables, Proc. London Math. Soc. (3) 88 (2004), no. 2, 289–312, DOI 10.1112/S0024611503014497. MR2032509

[34] E. Hecke, Lectures on the theory of algebraic numbers, Graduate Texts in Mathematics, vol. 77, Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer, Jay R. Goldman and R. Kotzen. MR638719

[35] C. Hooley, On nonary cubic forms, J. Reine Angew. Math. 386 (1988), 32–98, DOI 10.1515/crll.1988.386.32. MR936992

[36] , On octonary cubic forms, Proc. Lond. Math. Soc. (3) 109 (2014), no. 1, 241–281, DOI 10.1112/plms/pdt066. MR3237742

[37] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892), no. 3, 403–442, DOI 10.1007/BF01443420 (German). MR1510753

[38] V. A. Iskovskih, A counterexample to the Hasse principle for systems of two quadratic forms in five variables, Mat. Zametki 10 (1971), 253–257 (Russian). MR286743

[39] J. Jahnel, More cubic surfaces violating the Hasse principle, J. Th´eor. Nombres Bordeaux 23 (2011), no. 2, 471–477 (English, with English and French summaries). MR2817940

[40] G. J. Janusz, Algebraic number fields, 2nd ed., Graduate Studies in Mathematics, vol. 7, American Mathematical Society, Providence, RI, 1996. MR1362545

[41] J. Li, On primes in arithmetic progressions, Automorphic forms and related topics, Contemp. Math., vol. 732, Amer. Math. Soc., Providence, RI, 2019, pp. 165–167, DOI 10.1090/conm/732/14789. MR3973290

[42] C. E. Lind, Untersuchungen u¨ber die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, 1940 (German). MR0022563

[43] C. Lv and Y. P. Deng, On orders in number fields: Picard groups, ring class fields and applications, Sci. China Math. 58 (2015), no. 8, 1627–1638, DOI 10.1007/s11425-015-4979-3. MR3368170

[44] D. A. Marcus, Number fields, Springer-Verlag, New York-Heidelberg, 1977. Universitext. MR0457396

[45] O. Marmon and P. Vishe, On the Hasse principle for quartic hypersurfaces, Duke Math. J. 168 (2019), no. 14, 2727–2799, DOI 10.1215/00127094-2019-0025. MR4012347

[46] L. J. Mordell, On the conjecture for the rational points on a cubic surface, J. London Math. Soc. 40 (1965), 149–158, DOI 10.1112/jlms/s1-40.1.149. MR0169815

[47] , On a Pellian equation conjecture. II, J. London Math. Soc. 36 (1961), 282–288, DOI 10.1112/jlms/s1-36.1.282. MR0126411

[48] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamen- tal Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR1697859

[49] D. Q. N. Nguyen, On the Hasse principle for certain quartic hypersurfaces, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4293–4305, DOI 10.1090/S0002-9939-2011-10936-5. MR2823075

[50] , The Hasse principle for certain hyperelliptic curves and forms, Q. J. Math. 64 (2013), no. 1, 253–268, DOI 10.1093/qmath/har041. MR3032098

[51] , Certain forms violate the Hasse principle, Tokyo J. Math. 40 (2017), no. 1, 277–299, DOI 10.3836/tjm/1502179228. MR3689991

[52] C. Pomerance, Remarks on the P´olya-Vinogradov inequality, Integers 11 (2011), no. 4, 531–542, DOI 10.1515/integ.2011.039. MR2988079

[53] B. Poonen, An explicit algebraic family of genus-one curves violating the Hasse principle, J. Th´eor. Nombres Bordeaux 13 (2001), no. 1, 263–274 (English, with English and French summaries). 21st Journ´ees Arithm´etiques (Rome, 2001). MR1838086

[54] B. Poonen and Jos´e Felipe Voloch, Random Diophantine equations, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkh¨auser Boston, Boston, MA, 2004, pp. 175–184, DOI 10.1007/978-0-8176-8170-8-11. With appendices by Jean-Louis Colliot-Th´el`ene and Nicholas M. Katz. MR2029869

[55] H. Reichardt, Einige im Kleinen u¨berall l¨osbare, im Grossen unl¨osbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12–18, DOI 10.1515/crll.1942.184.12 (German). MR9381

[56] P. Samuel, Algebraic theory of numbers, Translated from the French by Allan J. Silberger, Houghton Mifflin Co., Boston, Mass., 1970. MR0265266

[57] A. Schinzel, Hasse’s principle for systems of ternary quadratic forms and for one biquadratic form, Studia Math. 77 (1984), no. 2, 103–109, DOI 10.4064/sm-77-2-103-109. MR743067

[58] H. A. Schwarz, Ueber diejenigen algebraischen Gleichungen zwischen zwei ver¨anderlichen Gr¨ossen, welche eine Schaar rationaler eindeutig umkehrbarer Transformationen in sich selbst zulassen, J. Reine Angew. Math. 87 (1879), 139–145, DOI 10.1515/crll.1879.87.139 (German). MR1579787

[59] E. S. Selmer, The Diophantine equation ax3 + by3 + cz3 = 0, Acta Math. 85 (1951), 203–362 (1 plate), DOI 10.1007/BF02395746. MR0041871

[60] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR0344216

[61] , Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR554237

[62] H. P. F. Swinnerton-Dyer, Two special cubic surfaces, Mathematika 9 (1962), 54–56, DOI 10.1112/S0025579300003090. MR0139989

[63] J. T. Tate, Global class field theory, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 162–203. MR0220697

[64] A. J. van der Poorten, H. J. J. te Riele, and H. C. Williams, Computer verification of the Ankeny- Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 70 (2001), no. 235, 1311–1328, DOI 10.1090/S0025-5718-00-01234-5. MR1709160

[65] A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Corrigenda and addition to: “Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000” [Math. Comp. 70 (2001), no. 235, 1311–1328; MR1709160 (2001j:11125)], Math. Comp. 72 (2003), no. 241, 521–523, DOI 10.1090/S0025-5718-02-01527-2. MR1933835

[66] A. Weil, Sur les courbes alg´ebriques et les vari´et´es qui s’en d´eduisent, Actualit´es Sci. Ind., no. 1041= Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948 (French). MR0027151

参考文献をもっと見る