リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MIG-seqと古典的DNAバーコードにもとづく東南アジア産クスノキ科アクチノダフネ属の分類学的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MIG-seqと古典的DNAバーコードにもとづく東南アジア産クスノキ科アクチノダフネ属の分類学的研究

岡部, 憲和 OKABE, Norikazu オカベ, ノリカズ 九州大学

2020.05.31

概要

The genera Actinodaphne Nees and Neolitsea Merr. (Lauraceae) include ~100 each spp. of evergreen trees that mainly occur in Asia, and both morphological analysis and molecular phylogenetic analysis have supported that Actinodaphne and Neolitsea are closely related to Litsea Lam. Both Actinodaphne and Neolitsea can be distinguished from Litsea by leaves that are whorled or clustered in the nodes of branches, and Actinodaphne and Neolitsea can be distinguished on the basis of flower morphology. Recent molecular phylogenetic studies have suggested that Neolitsea is monophyletic but Actinodaphne is not. However, the resolution of the phylogenetic trees generated by these studies has been relatively low, owing to limited numbers of phylogenetically informative characters. In this study, we employed multiplexed inter-simple sequence repeats genotyping by sequencing (MIG-seq) to obtain finely resolved phylogenetic trees, in addition to phylogenetic analyses using internal transcribed spacer (ITS) sequences of ribosomal DNA. Here, we describe the results from phylogenetic analyses combined with morphological studies.

In Chapter I, a new species of Actinodaphne (Lauraceae), Actinodaphne lambirensis Tagane, Yahara & Okabe is described from Lambir Hills National Park, Miri District, Sarawak, Malaysia based on a MIG-seq tree, ITS tree, and morphological observation. Because only fruiting specimens were available for A. lambirensis, we confirmed its position in the phylogenetic trees obtained from 22 Actinodaphne spp. including the type species of the genus, A. pruinosa Nees, and 11 Neolitsea spp. from Southeast Asia, MIG-seq. In addition, we reconstructed a phylogenetic tree using ITS sequences for 36 Actinodaphne spp. and 40 Neolitsea spp. that included the 22 MIG-seq samples and additional species of Actinodaphne for which ITS sequences were determined in previous studies. Both MIG-seq tree and ITS tree supported that A. lambirensis belongs to Actinodaphne.

In chapter II, we examined effectiveness of MIG-seq for phylogenetic reconstruction and species discovery of Actinodaphne and Neolitsea in Southeast Asia. We compared a MIG-seq tree reconstructed for 25 and 45 species of Actinodaphne and Neolitsea, respectively, with an ITS tree for 18 and 33 species of two genera. As a result, 119 of 162 (72 %) branches and 26 of 88 (30 %) branches were supported by bootstrap values of 85 % or larger in MIG-seq and ITS trees, respectively. In the 20 nodes supported by both ITS and MIG-seq trees, a bootstrap support to each node was always higher on the MIG-seq tree. In one of two inconsistent cases between the MIG-seq tree and the ITS tree, topologies of the MIG-seq tree agreed with morphological resemblance. In the MIG-seq tree, Actinodaphne was separated into two clades: Actinodaphne 1 including A. aff. tsaii 1 and A. aff. tsaii 2, and Actinodaphne 2 including the other 23 spp. Actinodaphne 1, Actinodaphne 2, and Neolitsea were almost equally differentiated. The MIG-seq tree supported sister relationship for 18 pairs of species, and sister species of each pair are distinguished by diagnostic traits. In both genera, morphologically similar species were often not sister to each other, suggesting repeated parallel evolution of leaf traits. On the MIG-seq tree, 6 Actinodaphne spp. and 30 Neolitsea spp. did not match any described species and are likely to be undescribed species. These results showed that a highly resolved phylogenetic tree by MIG-seq is effective to discover and delimitate new species.

In chapter III, a new genus Neoactinodaphne Okabe, Tagane & Yahara, including two new species and a variety were described from Vietnam and Thailand. This new genus is characterized by well-developed intervening veins perpendicularly extending between secondary veins. Phylogenetic analyses based on MIG-seq showed that this new genus, having 3-merous flowers with 9 stamens, was sister to but distinct from Neolitsea, having 2-merous flowers with 6 stamens. Principal component analysis and a cluster analysis by Unweighted Pair Group Method using arithmetic Average were performed for a total of 67 species of Actinodaphne and Neoactinodaphne using six leaf traits: maximal number of leaves clustered on the branch top (MLC), midpoint petiole length (PL), midpoint leaf length (LL), midpoint leaf width (LW), midpoint lateral veins (LV), midpoint aspect ratio (AR). Neoactinodaphne is placed among species of Actinodaphne, showing that Neoactinodaphne is difficult to be distinguished from Actinodaphne spp by leaf shape. The MIG-seq tree showed that A. acuminata was placed not in Actinodaphne but in Litsea. The MIG-seq tree and morphological observations supported that eight species of Actinodaphne (24 %) are considered to be undescribed. Our results showed that phylogenetic analyses using MIG-seq are effective to discover and describe new species if it is combined with morphometric analyses.

この論文で使われている画像

参考文献

Allen CK (1938, published in 1937) Studies in the Lauraceae 1. Chinese and Indochinese species of Litsea, Neolitsea, and Actinodaphne. Ann Missouri Bot Gard 25:361–434.

Arifiani D (2001) Taxonomic revision of Endiandra (Lauraceae) in Borneo. Blumea 46: 99-124

Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 1:171–182. doi: 10.1534/g3.111.000240

Chanderbali AS, van der Werff H, Renner SS (2001) Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard 88:104–134. doi: 10.2307/2666133

Dao GK (2017) Lauraceae. Flora of Viet Nam vol. 20. 698pp. Publishing House for Science & Technology, Hanoi.

de Kok RPJ (2016a) A revision of Beilschmiedia (Lauraceae) of Peninsular Malaysia. Blumea 61: 147–164.

de Kok RPJ (2016b) A revision of Cryptocarya R. Br. (Lauraceae) of Peninsular Malaysia. Kew Bulletin 71: 7. DOI 10.1007/S12225-016-9613-1

de Kok RPJ (2019) Three new taxa, two new combinations and thirty-one lectotypifications in several Lauraceae genera from Peninsular Malaysia. Gard Bull Sing 71 (1): 141–161

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15. doi: 10.1093/bioinformatics/btu033

Fijridiyanto IA, Murakami N (2009) Phylogeny of Litsea and related genera (Laureae-Lauraceae) based on analysis of rpb2 gene sequences. J Plant Res 122:283– 298. doi: 10.1007/s10265-009-0218-8.

Ho L (1934) Contribution à l’Étude Systématique et Phytogéographique des Lauracées de Chine et d’Indochine. Paris: Hermann et Cie.

Hô PH (1999) Cay Co Viet Nam: Ill. Fl. Vietnam vol. 1, Young Publishers, Ho Chi Minh City (in Vietnamese).

Hooker, JD (1890) Flora of British India vol. 5. Gilbert & Rivington, London.

Huang PH, van der Werff H (2008) Actinodaphne. In: Wu Z, Raven PH, Hong D (eds) Flora of China 7, Beijing, Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, pp 161–166. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=100442 accessed 7th January 2020

Julia, S. 2005. A synopsis of the genus Actinodaphne Nees (Lauraceae) in Sabah and Sarawak, Malaysia. Gard Bull Sing 57: 69-100.

Kochummen KM (1989) Lauraceae. In Ng FSP ed. Tree Flora of Malaya 4: 98–178.

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054

Lassmann T, Hayashizaki Y, Daub CO (2009) TagDust-a program to eliminate artifacts from next generation sequencing data. Bioinformatics 25: 2839–2840. doi: 10.1093/bioinformatics/btp527

Li, J., Christophel, D. C., Conran, J. G., Li, H. W. (2004) Phylogenetic relationships within the ‘core’ Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Plant Syst Evol 246: 19–34. doi: 10.1007/s00606-003-0113-z

Li L, Li J, Conran JG, Li XW, Li HW (2007) Phylogeny of Neolitsea (Lauraceae) inferred from Bayesian analysis of nrDNA ITS and ETS sequences. Plant Syst Evol 269: 203–221. doi: 10.1007/s00606-007-0580-8

Li ZM, Li J, Li XW (2006) Polyphyly of the genus Actinodaphne (Lauraceae) inferred from the analyses of nrDNA ITS and ETS sequences. Plant Syst Evol 44: 272–285. doi: 10.1360/aps040150

Li L., Tan YH, Meng HH, Ma H, Li J (2020). Two new species of Alseodaphnopsis (Lauraceae) from southwestern China and northern Myanmar: evidence from morphological and molecular analyses. PhytoKeys 138: 27

Liou H (1934) Lauracées de Chine et d'Indochine. Hermann & Cie, Paris.

Liu B, Yang Y, Xie L, Zeng G, Ma K (2013a) Beilschmiedia turbinata: A newly recognized but dying species of Lauraceae from tropical Asia based on morphological and molecular data. PLoS ONE 8(6): e67636. doi:10.1371/journal.pone.0067636

Liu B, Yang Y, Ma K (2013b) A new species of Caryodaphnopsis Airy Shaw (Lauraceae) from southeastern Yunnan, China. Phytotaxa 118 (1): 1–8.

Mase, K., S. Tagane, P. Chhang, & T. Yahara. 2020. A taxonomic study of Machilus (Lauraceae) in Cambodia based on DNA barcodes and morphological observations. Acta Phytotax Geobot. in press.

Middleton, D.J., K. Armstrong, Y. Baba, H. Balslev, K. Chayamarit, R.C.K. Chung, B.J. Conn, E.S. Fernando, K. Fujikawa, R. Kiew, H.T. Luu, M.M. Aung, M.F. Newman, T. Nobuyuki, S. Tagane, D.C. Thomas, T.B. Tran, T.M.A. Utteridge, P.C. van Welzen, D. Widyatmoko, T. Yahara, & K.M. Wong. Progress on Southeast Asia's Flora projects. Gard Bull Sing 71: 267319.

Mitsuyuki C, Tagane S, Van Ngoc N, Binh H T, Suddee S, Rueangruea S, Toyama H, Mase K, Yang CJ, Naiki A, Yahara T (2018) Two New Species of Neolitsea (Lauraceae), N. kraduengensis from Thailand and N. vuquangensis from Vietnam and an Analysis of their Phylogenetic Positions using ITS sequences. Acta Phytotax Geobot 69:161–173. doi: 10.18942/apg.201810

Mo Y-q, Li L, Li J-w, Rohwer JG, Li H-w, Li J (2017) Alseodaphnopsis: A new genus of Lauraceae based on molecular and morphological evidence. PLoS ONE 12(10): e0186545. https://doi.org/10.1371/journal.pone.0186545

Nagahama, A. et al. [19 authors] (2019). A Picture Guide for the Flora of Bidoup-Nui Ba National Park I: Mt. Langbian. Center for Asian Conservation Ecology, Kyushu University.

Nees CG (1831) Actinodaphne. In Wallich N, Plantae Asiaticae rariores, or, Descriptions and figures of a select number of unpublished East Indian plants 2: 68.

Nishida S (2008) Taxonomic revision of Beilschmiedia (Lauraceae) in Borneo. Blumea 53: 345-383.

Raes N, Saw LG, van Welzen PC. Yahara T (2013) Legume diversity as indicator for botanical diversity on Sundaland, South East Asia. South Afr J Bot 89: 265-272.

Rohwer JG (1993) Lauraceae. In: Kubitzk K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants. vol. 2, Springer, Berlin. pp 366–391.

Rohwer JG (2000) Toward a phylogenetic classification of the Lauraceae: evidence from matK sequences. Syst Bot 25:60–72. doi: 10.2307/2666673

Rohwer JG, Li J, Rudolph B, Schmidt SA, van der Werff H, Li HW (2009) Is Persea (Lauraceae) monophyletic? Evidence from nuclear ribosomal ITS sequences. Taxon 58:1153–1167. doi: 10.1002/tax.584009

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446

Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep 5:16963. doi: 10.1038/srep16963

Tagane, S (2019) Floristic inventory and diversity of tropical forests in Southeast Asia. J Phytogeogr Taxon 67 (1): 1-11, in Japanese.

Tagane S, Toyama H, Chhang P, Nagamasu H, Yahara T (2015) Flora of Bokor National Park, Cambodia I: Thirteen new species and nne change in status. Acta Phytotax Geobot. 6 (2): 95–135,

Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11:914–921. doi: 10.1111/j.1755-0998.2011.03021.x

Tanaros M, Vajrodaya S, Chayamarit K. (2010) Taxonomic study of the genus Actinodaphne Nees (Lauraceae) in Thailand. Thai J Bot 2:7–23.

van der Werff H (2001) An annotated key to the genera of Lauraceae in the Flora Malesiana Region. Blumea 46:125–140.

Yahara T, Tagane S, Mase K, Chhang P, Toyama H. 2016. Flora of Bokor National Park V : Two new species of Machilus (Lauraceae), M. bokorensis and M. brevipaniculata. Phytokeys 65: 35-46. doi: 10.3897/phytokeys.65.7403

Zhang M, Tagane S, Toyama H, Kajisa T, Chhang P, Yahara T. (2016) Constant tree species richness along an elevational gradient of Mt. Bokor, a table-shaped mountain in southwestern Cambodia. Ecol Res 31:495–504. doi: 10.1007/s11284-016-1358-7

Zhang M, Yahara T, Tagane S, Rueangruea S, Suddee S, Moritsuka E, Suyama Y. (2020) Cryptocarya kaengkrachanensis, a new species of Lauraceae from Kaeng Krachan National Park, southwest Thailand. PhytoKeys 140: 139–157. doi: 10.3897/phytokeys.@.34574

Zhu, H. 2006. Forest vegetation of Xishuangbanna, south China. For Stud China 8(2): 1–-58. DOI: 10.1007/s11632-006-0014-7

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る