リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Physiological and Pathological Mitochondrial Clearance Is Related to Pectoralis Major Muscle Pathogenesis in Broilers With Wooden Breast Syndrome」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Physiological and Pathological Mitochondrial Clearance Is Related to Pectoralis Major Muscle Pathogenesis in Broilers With Wooden Breast Syndrome

Hosotani, Marina Kawasaki, Takeshi Hasegawa, Yasuhiro Wakasa, Yui Hoshino, Maki Takahashi, Naoki Ueda, Hiromi Takaya, Tomohide Iwasaki, Tomohito Watanabe, Takafumi 信州大学 DOI:10.3389/fphys.2020.00579

2020.06.22

概要

Wooden breast syndrome (WB) constitutes an emerging myopathy in the pectoralis major muscle (PM) of broiler chickens, characterized by myofiber hypertrophy and degeneration along with severe fibrosis. WB pathogenesis has been considered to involve hypoxia induced by rapid growth of the PM. In this study, we focused on mitochondrial morphology and dynamics in the myofibers, as these organelles are sensitive to damage by hypoxia, and examined the effects on WB pathogenesis. Specifically, the PMs of a flock of 35 broilers at 50 days of age were evaluated. First, the severity of disease in each bird was determined by measuring histopathological indices including the fibrotic area (FA) in the muscle and circularity of myofibers (CM). These values were 29.4 ± 9.6% and 0.70 ± 0.042, respectively, showing variety among the flock. Myofiber vacuolization was observed in all birds including numerous small- or large-rimmed vacuoles, with the former consisting of ultrastructurally autophagosome-like vacuoles engulfing degenerated mitochondria. The large-rimmed vacuoles frequently occurred in the PMs with more severe FA and CM, indicating a relationship between altered autophagy/mitophagy and WB severity. Next, the expression levels of hypoxia-adaptive and mitochondrial dynamics-related genes were analyzed, and their correlations with the histopathological indices were examined. The histopathological indices were negatively correlated with the expression of vascular endothelial growth factor A (VEGFA), indicating that less angiogenesis owing to weakened hypoxia-inducible factor signaling induces more severe WB pathology. In addition, the observed negative correlation with mitochondrial dynamics-related genes implied that WB pathology deteriorates concomitant with reduced mitochondrial dynamics. Furthermore, the expression of mitochondrial dynamics-related genes showed strong positive correlation with that of VEGFA and autophagy-/mitophagy-related genes. These results revealed that the PMs of broilers possess the mechanism of physiological clearance of mitochondria damaged by the hypoxia resulting from the continuous mitochondrial dynamics and autophagy/mitophagy accompanying rapid PM growth. In turn, the altered mitochondrial clearance induced by chronic hypoxia and the accumulation of damaged mitochondria likely underly the severe pathological features of WB.

参考文献

Bailey, R. A., Watson, K. A., Bilgili, S. F., and Avendano, S. (2015). The genetic basis

of pectoralis major myopathies in modern broiler chicken lines. Poult. Sci. 94,

2870–2879. doi: 10.3382/ps/pev304

Balog, J., Mehta, S. L., and Vemuganti, R. (2016). Mitochondrial fission and fusion

in secondary brain damage after CNS insults. J. Cereb. Blood Flow Metab. 36,

2022–2033. doi: 10.1177/0271678X16671528

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation, to any

qualified researcher.

ETHICS STATEMENT

The animal study was reviewed and approved by the

Rakuno Gakuen University Institutional Animal Care

and Use Committee.

AUTHOR CONTRIBUTIONS

MarH, YH, YW, and MakH acquired the data. MarH, YW,

and MakH analyzed the data. MarH, TI, and TW interpreted

the results. TK, TT, TI, and TW designed the study. NT

and HU provided technical assistance with transmission

electron microscopy. MarH and TW wrote the first draft

of the manuscript. All authors approved the final version

of the manuscript.

FUNDING

This work was supported by Grant-in-Aid Scientific Research (C)

from Japan Society for the Promotion of Science (#18K05941,

TW and #17K08067, TI).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphys.

2020.00579/full#supplementary-material

Abasht, B., Mutryn, M. F., Michalek, R. D., and Lee, W. R. (2016).

Oxidative stress and metabolic perturbations in wooden breast disorder

in chickens. PLoS One 11:e0153750. doi: 10.1371/journal.pone.015

3750

Frontiers in Physiology | www.frontiersin.org

10

June 2020 | Volume 11 | Article 579

Hosotani et al.

Mitochondrial Clearance in Wooden Breast

Byrne, J. J., Soh, M. S., Chandhok, G., Vijayaraghavan, T., Teoh, J. S., Crawford,

S., et al. (2019). Disruption of mitochondrial dynamics affects behaviour and

lifespan in Caenorhabditis elegans. Cell. Mol. Life Sci. 76, 1967–1985. doi: 10.

1007/s00018-019-03024-5

Castets, P., Frank, S., Sinnreich, M., and Rüegg, M. A. (2016). “Get the

balance right”: pathological significance of autophagy perturbation in

neuromuscular disorders. J. Neuromuscul. Dis. 3, 127–155. doi: 10.3233/JND-16

0153

Cho, A., and Noguchi, S. (2013). “Autophagy in GNE myopathy,” in Autophagy - A

Double-Edged Sword - Cell Survival or Death?, ed. Y. Bailey (London: InTech),

doi: 10.5772/55223

Clark, D. L., and Velleman, S. G. (2016). Spatial influence on breast muscle

morphological structure, myofiber size, and gene expression associated with the

wooden breast myopathy in broilers. Poult. Sci. 95, 2930–2945. doi: 10.3382/ps/

pew243

Eskelinen, E. L., Reggiori, F., Baba, M., Kovács, A. L., and Seglen, P. O. (2011).

Seeing is believing: the impact of electron microscopy on autophagy research.

Autophagy 7, 935–956. doi: 10.4161/auto.7.9.15760

Favaro, G., Romanello, V., Varanita, T., Andrea Desbats, M., Morbidoni, V.,

Tezze, C., et al. (2019). DRP1-mediated mitochondrial shape controls calcium

homeostasis and muscle mass. Nat. Commun. 10:2576. doi: 10.1038/s41467019-10226-9

Greijer, A. E., and van der Wall, E. (2004). The role of hypoxia inducible factor

1 (HIF-1) in hypoxia induced apoptosis. J. Clin. Pathol. 57, 1009–1014. doi:

10.1136/jcp.2003.015032

Griffin, J. R., Moraes, L., Wick, M., and Lilburn, M. S. (2018). Onset of white

striping and progression into wooden breast as defined by myopathic changes

underlying pectoralis major growth. Estimation of growth parameters as

predictors for stage of myopathy progression. Avian Pathol. 47, 2–13. doi:

10.1080/03079457.2017.1356908

Hall, A. R., Burke, N., Dongworth, R. K., and Hausenloy, D. J. (2014).

Mitochondrial fusion and fission proteins: novel therapeutic targets for

combating cardiovascular disease. Br. J. Pharmacol. 171, 1890–1906. doi: 10.

1111/bph.12516

Hasegawa, Y., Hara, T., Kawasaki, T., Yamada, M., Watanabe, T., and Iwasaki, T.

(2020). Effect of wooden breast on postmortem changes in chicken meat. Food

Chem. 315:126285. doi: 10.1016/j.foodchem.2020.126285

Kawasaki, T., Iwasaki, T., Yamada, M., Yoshida, T., and Watanabe, T. (2018).

Rapid growth rate results in remarkably hardened breast in broilers during the

middle stage of rearing: a biochemical and histopathological study. PLoS One

13:e0193307. doi: 10.1371/journal.pone.0193307

Kawasaki, T., Yoshida, T., and Watanabe, T. (2016). Simple method for

screening the affected birds with remarkably hardened pectoralis major muscles

among broiler chickens. J. Poult. Sci. 53, 291–297. doi: 10.2141/jpsa.016

0036

Kuttappan, V. A., Huff, G. R., Huff, W. E., Hargis, B. M., Apple, J. K., Coon, C.,

et al. (2013). Comparison of hematologic and serologic profiles of broiler birds

with normal and severe degrees of white striping in breast fillets. Poult. Sci. 92,

339–345. doi: 10.3382/ps.2012-02647

Liesa, M., and Shirihai, O. S. (2013). Mitochondrial dynamics in the regulation

of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506. doi:

10.1016/j.cmet.2013.03.002

Majmundar, A. J., Wong, W. J., and Simon, M. C. (2010). Hypoxia-inducible factors

and the response to hypoxic stress. Mol. Cell 40, 294–309. doi: 10.1016/j.molcel.

2010.09.022

Malicdan, M. C. V., and Nishino, I. (2012). Autophagy in lysosomal

myopathies. Brain Pathol. 22, 82–88. doi: 10.1111/j.1750-3639.2011.

00543.x

Malila, Y., Thanatsang, K., Arayamethakorn, S., Uengwetwanit, T., Srimarut, Y.,

Petracci, M., et al. (2019). Absolute expressions of hypoxia-inducible factor-1

alpha (HIF1A) transcript and the associated genes in chicken skeletal muscle

with white striping and wooden breast myopathies. PLoS One 14:e0220904.

doi: 10.1371/journal.pone.0220904

Mutryn, M. F., Brannick, E. M., Fu, W., Lee, W. R., and Abasht, B. (2015).

Characterization of a novel chicken muscle disorder through differential

gene expression and pathway analysis using RNA-sequencing. BMC Genomics

16:399. doi: 10.1186/s12864-015-1623-0

Frontiers in Physiology | www.frontiersin.org

Neel, B. A., Lin, Y., and Pessin, J. E. (2013). Skeletal muscle autophagy: a new

metabolic regulator. Trends Endocrinol. Metab. 24, 635–643. doi: 10.1016/j.tem.

2013.09.004

Nishino, I. (2006). Autophagic vacuolar myopathy. Semin. Pediatr. Neurol. 13,

90–95. doi: 10.1016/j.spen.2006.06.004

Ohno, H., Shirato, K., Sakurai, T., Ogasawara, J., Sumitani, Y., Sato, S., et al. (2012).

Effect of exercise on HIF-1 and VEGF signaling. J. Phys. Fit. Sport. Med. 1, 5–16.

doi: 10.7600/jpfsm.1.5

Papah, M. B., Brannick, E. M., Schmidt, C. J., and Abasht, B. (2018). Gene

expression profiling of the early pathogenesis of wooden breast disease in

commercial broiler chickens using RNA-sequencing. PLoS One 13:e0207346.

doi: 10.1371/journal.pone.0207346

Petracci, M., Mudalal, S., Soglia, F., and Cavani, C. (2015). Meat quality in fastgrowing broiler chickens. Worlds Poult. Sci. J. 71, 363–374. doi: 10.1017/

S0043933915000367

Petracci, M., Soglia, F., Madruga, M., Carvalho, L., Ida, E., and Estévez,

M. (2019). Wooden-breast, white striping, and spaghetti meat: causes,

consequences and consumer perception of emerging broiler meat

abnormalities. Compr. Rev. Food Sci. 18, 565–583. doi: 10.1111/1541-4337.

12431

Radaelli, G., Piccirillo, A., Birolo, M., Bertotto, D., Gratta, F., Ballarin, C., et al.

(2017). Effect of age on the occurrence of muscle fiber degeneration associated

with myopathies in broiler chickens submitted to feed restriction. Poult. Sci. 96,

309–319. doi: 10.3382/ps/pew270

Richards, M. P. (2003). Genetic regulation of feed intake and energy

balance in poultry. Poult. Sci. 82, 907–916. doi: 10.1093/ps/82.

6.907

Romanello, V., and Sandri, M. (2016). Mitochondrial quality control and

muscle mass maintenance. Front. Physiol. 6:422. doi: 10.3389/fphys.2015.

00422

Sato, Y., Ohtsubo, H., Nihei, N., Kaneko, T., Sato, Y., Adachi, S., et al.

(2018). Apobec2 deficiency causes mitochondrial defects and mitophagy

in skeletal muscle. FASEB J. 32, 1428–1439. doi: 10.1096/fj.20170

0493R

Sato, Y., Shimizu, M., Mizunoya, W., Wariishi, H., Tatsumi, R., Buchman, V. L.,

et al. (2009). Differential expression of sarcoplasmic and myofibrillar proteins

of rat soleus muscle during denervation atrophy. Biosci. Biotechnol. Biochem.

73, 1748–1756. doi: 10.1271/bbb.90085

Schaaf, M. B. E., Keulers, T. G., Vooijs, M. A., and Rouschop, K. M. A. (2016).

LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 30,

3961–3978. doi: 10.1096/fj.201600698R

Sihvo, H.-K., Immonen, K., and Puolanne, E. (2014). Myodegeneration with

fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Pathol.

51, 619–623. doi: 10.1177/0300985813497488

Sin, J., Andres, A. M., Taylo, R., Weston, T., Hiraumi, Y., Stotland, A., et al.

(2016). Mitophagy is required for mitochondrial biogenesis and myogenic

differentiation of C2C12 myoblasts. Autophagy 12, 369–380. doi: 10.1080/

15548627.2015.1115172

Suzuki, T., Nakagawa, M., Yoshikawa, A., Sasagawa, N., Yoshimori, T., Ohsumi,

Y., et al. (2002). The first molecular evidence that autophagy relates rimmed

vacuole formation in chloroquine myopathy. J. Biochem. 131, 647–651. doi:

10.1093/oxfordjournals.jbchem.a003147

Thai, T. Q., Nguyen, H. B., Saitoh, S., Wu, B., Saitoh, Y., Shimo, S., et al. (2016).

Rapid specimen preparation to improve the throughput of electron microscopic

volume imaging for three-dimensional analyses of subcellular ultrastructures

with serial block-face scanning electron microscopy. Med. Mol. Morphol. 49,

154–162. doi: 10.1007/s00795-016-0134-7

Thomas, L. W., and Ashcroft, M. (2019). Exploring the molecular interface between

hypoxia-inducible factor signalling and mitochondria. Cell. Mol. Life Sci. 76,

1759–1777. doi: 10.1007/s00018-019-03039-y

Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018). Mitochondrial

dynamics: overview of molecular mechanisms. Essays Biochem. 62, 341–360.

doi: 10.1042/EBC20170104

Tokutake, Y., Yamada, K., Hayashi, S., Arai, W., Watanabe, T., and Yonekura,

S. (2019). IRE1-XBP1 pathway of the unfolded protein response is required

during early differentiation of C2C12 myoblasts. Int. J. Mol. Sci. 21:E182. doi:

10.3390/ijms21010182

11

June 2020 | Volume 11 | Article 579

Hosotani et al.

Mitochondrial Clearance in Wooden Breast

Twig, G., Hyde, B., and Shirihai, O. S. (2008). Mitochondrial fusion,

fission and autophagy as a quality control axis: the bioenergetic view.

Biochim. Biophys. Acta 1777, 1092–1097. doi: 10.1016/j.bbabio.2008.

05.001

Velleman, S. G., and Clark, D. L. (2015). Histopathologic and myogenic

gene expression changes associated with wooden breast in broiler

breast muscles. Avian Dis. 59, 410–418. doi: 10.1637/11097-042015Reg.1

Ziello, J. E., Jovin, I. S., and Huang, Y. (2007). Hypoxia-inducible factor (HIF)-1

regulatory pathway and its potential for therapeutic intervention in malignancy

and ischemia. Yale J. Biol. Med. 80, 51–60.

Frontiers in Physiology | www.frontiersin.org

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Hosotani, Kawasaki, Hasegawa, Wakasa, Hoshino, Takahashi,

Ueda, Takaya, Iwasaki and Watanabe. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

12

June 2020 | Volume 11 | Article 579

...

参考文献をもっと見る