リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparative Visualization with 3D and Virtual Reality Techniques for Observing Mode Water Regions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparative Visualization with 3D and Virtual Reality Techniques for Observing Mode Water Regions

矢野, 緑里 お茶の水女子大学

2020.03.23

概要

With the evolution of observation measurements and computational techniques, 3D evaluation for ocean data taking the reproducibility of the ocean space into account is very important to generate more precise ocean data. Researchers in the field of physical oceanography have often focused on the variations on seawater surfaces and specific positions because of a lack of underwater information and data resolution in the past. However, it is difficult to observe the spatial and visual differences in the reproducibility of the ocean space. Here, this thesis focuses on the shapes of the mode water regions.

Mode water is a 3D region with similar physical characteristics and one of the criteria for the evaluation of ocean data because of its properties. Based on the properties of ocean phenomena used as the criteria for the evaluation of ocean data, shape comparison of mode water regions would be helpful to evaluate the reproducibility of the ocean space. Therefore, this thesis proposed two visualization techniques to analyze interactively shape comparison results of mode water regions applying various conditions. One is a 3D comparative visualization technique for observing mode water regions. The other is a viewpoint selection technique in a Virtual Reality (VR) space for supporting the observation of comparison results of mode water regions. This thesis discusses comparison results among shapes of North Pacific subtropical mode water (NPSTMW) extracted from the simulation, assimilation and observation datasets using a view-based method.

This thesis proposed features of the 3D space of each ocean data through shape comparison of the mode water regions using visualization techniques. These results would lead to the generation of ocean data with higher reproducibility and specific to the formation process of mode water regions.

参考文献

[1] L. D. Talley, Some Aspects of Ocean Heat Transport by the Shallow, Intermediate and Deep Overturning Circulations, Mechanisms of Global Climate Change at Millennial Time Scales, Geophysical Monograph Series, Vol. 112, pp. 1-22, 1999.

[2] E. M. Douglass, S. R. Jayne, S. Peacock, F. O. Bryan, M. E. Maltrud, Subtropical Mode Water Variability in a Climatologically Forced Model in the Northwestern Pacific Ocean, Journal of Physical Oceanography, Vol. 42, No. 1, pp. 126-140, 2012.

[3] W. Gao, P. Li, S. P. Xie, L. Xu, C. Liu, Multicore Structure of the North Pacific Subtropical Mode Water from Enhanced Argo Observations, Geophysical Research Letters, Vol. 43, No. 3, pp. 1249-1255, 2016.

[4] J. Masuzawa, Subtropical Mode Water, In Deep Sea Research and Oceanographic Abstracts. Elsevier, Vol. 16, No. 5, pp. 463-468, 1969.

[5] E. Oka, B. Qiu, Y. Takatani, K. Enyo, D. Sasano, N. Kosugi, M. Ishii, T. Nakano, T. Suga, Decadal Variability of Subtropical Mode Water Subduction and Its Impact on Biogeochemistry, Journal of Oceanography, Vol. 71, No.4, pp. 389-400, 2015.

[6] T. Yasuda, Y. Kitamura, Long-Term Variability of North Pacific Subtropical Mode Water in Response to Spin-Up of the Subtropical Gyre, Journal of Oceanography, Vol. 59, No. 3, pp. 279-290, 2003.

[7] X. J. Davis, L. M. Rothstein, W. K. Dewar, D. Menemenlis, Numerical Investigations of Seasonal and Interannual Variability of North Pacific Subtropical Mode Water and Its Implications for Pacific Climate Variability, Journal of Climate, Vol. 24, No. 11, pp. 2648-2665, 2011.

[8] S. Nishikawa, H. Tsujino, K. Sakamoto, H. Nakano, Effects of Mesoscale Eddies on Subduction and Distribution of Subtropical Mode Water in an Eddy-Resolving OGCM of the Western North Pacific, Journal of Physical Oceanography, Vol. 40, No. 8, pp. 1748-1765, 2010.

[9] L. Xu, S. P. Xie, J. L. McClean, Q. Liu, H. Sasaki, Mesoscale Eddy Effects on the Subduction of North Pacific Mode Waters, Journal of Geophysical Research: Oceans, Vol. 119, No. 8, pp. 4867-4886, 2014.

[10] Tenth Report of the Joint Panel on Oceanographic Tables and Standards, UNESCO Technical Papers in Marine Science, Vol. 36, 1981.

[11] I. Stendardo, D. Kieke, M. Rhein, N. Gruber, R. Steinfeldt, Interannual to Decadal Oxygen Variability in the Mid-Depth Water Masses of the Eastern North Atlantic, Deep Sea Research Part I: Oceanographic Research Papers, Vol. 95, pp. 85-98, 2015.

[12] I. Fujishiro, Y. Maeda, H. Sato, Y. Takeshima, Volumetric Data Exploration Using Interval Volume, IEEE Transactions on Visualization and Computer Graphics, Vol. 2, No. 2, pp. 144-155, 1996.

[13] O. S. Alabi, X. Wu, J. M. Harter, M. Phadke, L. Pinto, H. Petersen, S. Bass, M. Keifer, S. Zhong, C. G. Healey, R. M. Taylor, Comparative Visualization of Ensembles Using Ensemble Surface Slicing, In Proceedings of SPIE, Vol. 8294, 2012.

[14] I. Demir, J. Kehrer, R. Westermann, Screen-Space Silhouettes for Visualizing Ensembles of 3D Isosurfaces, IEEE Pacific Visualization Symposium, pp. 204-208, 2016.

[15] S. Hazarika, S. Dutta, H. W. Shen, Visualizing the Variations of Ensemble of Isosurfaces, IEEE Pacific Visualization Symposium, pp. 209-213, 2016.

[16] H. ElNaghy, S. Hamad, M. E. Khalifa, Taxonomy for 3D Content-Based Object Retrieval Methods, International Journal of Recent Research and Applied Studies, Vol. 14, No. 2, pp. 412-446, 2013.

[17] D. Y. Chen, X. P. Tian, Y. T. Shen, M. Ouhyoung, On Visual Similarity based 3D Model Retrieval, In Computer Graphics Forum, Vol. 22, No. 3, pp. 223-232, 2003.

[18] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The Princeton Shape Benchmark, In Shape Modeling Applications, pp. 167-178, 2004.

[19] A. D. Bimbo, P. Pala, Content-Based Retrieval of 3D Models, ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 2, No. 1, pp. 20-43, 2006.

[20] R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, D. Seidov, World Ocean Atlas 2013 Volume 1: Temperature, NOAA Atlas NESDIS 73, Silver Spring, MD, Vol. 40, 2013.

[21] M. M. Zweng, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, M. M. Biddle, World Ocean Atlas 2013 Volume 2: Salinity, NOAA Atlas NESDIS 74, Silver Spring, MD, Vol. 39, 2013.

[22] Y. Masumoto, H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, H. Sakuma, T. Yamagata, A Fifty-Year Eddy-Resolving Simulation of the World Ocean -Preliminary Outcomes of OFES (OGCM for the Earth Simulator)-, Journal of the Earth Simulator, Vol. 1, pp. 35-56, 2004.

[23] N. Usui, T. Wakamatsu, Y. Tanaka, N. Hirose, T. Toyoda, S. Nishikawa, Y. Fujii, Y. Takatsuki, H. Igarashi, H. Nishikawa, Y. Ishikawa, T. Kuragano, M. Kamachi, Four-Dimensional Variational Ocean Reanalysis: a 30-Year High- Resolution Dataset in the Western North Pacific (FORA-WNP30), Journal of Oceanography, Vol. 73, No. 2, pp. 205-233, 2017.

[24] L. Liu, D. Silver, K. Bemis, D. Kang, E. Curchitser, Illustrative Visualization of Mesoscale Ocean Eddies, In Computer Graphics Forum, Vol. 36, No. 3, pp. 447-458, 2017.

[25] K. Toyama, T. Suga, Roles of Mode Waters in the Formation and Maintenance of Central Water in the North Pacific, In New Developments in Mode-Water Research, pp. 75-88, 2011.

[26] S.Bruckner, T. M¨oller, Isosurface Similarity Maps, In Computer Graphics Forum, Vol. 29, No. 3, pp. 773-782, 2010.

[27] J. Tao, M. Imre, C. Wang, N. V. Chawla, H. Guo, G. Sever, S. H. Kim, Exploring Time-Varying Multivariate Volume Data Using Matrix of Isosurface Similarity Maps, IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, pp. 1236-1245, 2018.

[28] S. Hazarika, A. Biswas, S. Dutta, H. W. Shen, Information Guided Exploration of Scalar Values and Isocontours in Ensemble Datasets, Entropy, Vol. 20, No. 7, pp. 540-558, 2018.

[29] A. Biswas, S. Dutta, H. W. Shen, J. Woodring, An Information-Aware Framework for Exploring Multivariate Data Sets, IEEE Transactions on Visualization and Computer Graphics, Vol. 19, No. 12, pp. 2683-2692, 2013.

[30] D. V. Vranic, D. Saupe, 3D Model Retrieval, Doctoral Dissertation, University of Leipzig, pp. 1-227, 2004.

[31] R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient Local Visual Features for Shape-Based 3D Model Retrieval, In Shape Modeling and Applications, pp. 93- 102, 2008.

[32] P. Lindstrom, G. Turk, Image-Driven Simplification, ACM Transactions on Graphics, Vol. 19, No. 3, pp. 204-241, 2000.

[33] D. F. Huber, M. Hebert, Fully Automatic Registration of Multiple 3D Data Sets, Image and Vision Computing, Vol. 21, No.7, pp. 637-650, 2003.

[34] L. Xu, S. P. Xie, Q. Liu, C. Liu, P. Li, X. Lin, Evolution of the North Pacific Subtropical Mode Water in Anticyclonic Eddies, Journal of Geophysical Research: Oceans, Vol. 122, No. 12, pp. 10118-10130, 2017.

[35] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-View Convolutional Neural Networks for 3d Shape Recognition, In Proceedings of the IEEE International Conference on Computer Vision, pp. 945-953, 2015.

[36] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, L. J. Guibas, Volumetric and Multi-View Cnns for Object Classification on 3d Data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648-5656, 2016.

[37] J. Weissenb¨ock, B. Fr¨ohler, E. Gr¨oller, J. Kastner, C. Heinzl, Dynamic Volume Lines: Visual Comparison of 3D Volumes through Space-Filling Curves, IEEE Transactions on Visualization and Computer Graphics, Vol. 25, No. 1, pp. 1040- 1049, 2018.

[38] T. H. Wei, C. M. Chen, J. Woodring, H. Zhang, H. W. Shen, Efficient Distribution- Based Feature Search in Multi-Field Datasets, IEEE Pacific Visualization Symposium, pp. 121-130, 2017.

[39] H. Zhou, X. Yuan, H. Qu, W. Cui, B. Chen, Visual Clustering in Parallel Coordinates. In Computer Graphics Forum, Vol. 27, No. 3, pp. 1047-1054, 2008.

[40] J. Johansson, P. Ljung, M. Jern, M. Cooper, Revealing Structure in Visualizations of Dense 2D and 3D Parallel Coordinates, Information Visualization, Vol. 5, No. 2, pp. 125-136, 2006.

[41] Z. Lian, A. Godil, X. Sun, Visual Similarity Based 3D Shape Retrieval Using Bag- of-Features, In 2010 Shape Modeling International Conference, pp. 25-36, 2010.

[42] M. Chaouch, A. Verroust-Blondet, A New Descriptor for 2D Depth Image Indexing and 3D Model Retrieval, In 2007 IEEE International Conference on Image Processing, Vol. 6, pp. 373-376, 2007.

[43] J. Lin, M. F. She, M. H. Tsai, I. C. Lin, Y. C. Lau, H. H. Liu, Retrieving 3D Objects with Articulated Limbs by Depth Image Input, In VISIGRAPP (1: GRAPP), pp. 101-111, 2018.

[44] J. L. Shih, H. Y. Chen, 3D Model Retrieval Based on Grid Sphere and Dodecahedral Silhouette Descriptors, In 9th Joint International Conference on Information Sciences (JCIS-06), Atlantis Press, 2006.

[45] Z. Xie, K. Xu, W. Shan, L. Liu, Y. Xiong, H. Huang, Projective Feature Learning for 3D Shapes with Multi‐ View Depth Images, In Computer Graphics Forum, Vol. 34, No. 7, pp. 1-11, 2015.

[46] X. Han, Z. Li, H. Huang, E. Kalogerakis, Y. Yu, High-Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local Geometry Inference, In Proceedings of the IEEE International Conference on Computer Vision, pp. 85-93, 2017.

[47] K. Mirhosseini, Q. Sun, K. C. Gurijala, B. Laha, A. E. Kaufman, Benefits of 3D Immersion for Virtual Colonoscopy, IEEE VIS International Workshop, pp. 75-79, 2014.

[48] B. Laha, D. A. Bowman, J. J. Socha, Effects of VR System Fidelity on Analyzing Isosurface Visualization of Volume Datasets, IEEE Transactions on Visualization and Computer Graphics, Vol. 20, No. 4, pp. 513-522, 2014.

[49] S. Zhang, C. Demiralp, D. F. Keefe, M. DaSilva, D. H. Laidlaw, B. D. Greenberg, C. Pierpaoli, T. S. Deisboeck, An Immersive Virtual Environment for DT-MRI Volume Visualization Applications: a Case Study, IEEE Visualization, pp. 437- 584, 2001.

[50] D. M. Randall, P. Metherall, K. D. Bardhan, P. Spencer, R. Gillott, R. De Noronha, J. W. Fenner, The Oculus Rift Virtual Colonoscopy: Introducing a New Technology and Initial Impressions, Journal of Biomedical Graphics and Computing, Vol. 6, No. 1, pp. 34-42, 2015.

[51] B. Laha, K. Sensharma, J. D. Schiffbauer, D. A. Bowman, Effects of Immersion on Visual Analysis of Volume Data, IEEE Transactions on Visualization and Computer Graphics, Vol. 18, No. 4, pp. 597-606, 2012.

[52] U. D. Bordoloi, H. W. Shen, View Selection for Volume Rendering, IEEE Visualization, pp. 487-494, 2005.

[53] S. Takahashi, I. Fujishiro, Y. Takeshima, T. Nishita, A Feature-Driven Approach to Locating Optimal Viewpoints for Volume Visualization, IEEE Visualization, pp. 495-502, 2005.

[54] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, M. Petersen, An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis, the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 424-434, 2014.

[55] G. Ji, H. W. Shen, Dynamic View Selection for Time-Varying Volumes, IEEE Transactions on Visualization and Computer Graphics, Vol. 12, No. 5, pp. 1109- 1116, 2006.

[56] P. P. V´azquez, M. Feixas, M. Sbert, W. Heidrich, Viewpoint Selection Using Viewpoint Entropy, Vision Modeling and Visualization Conference (VMV), Vol. 1, pp. 273-280, 2001.

[57] Report Of The Scientific Results of the Exploring Voyage of H.M.S. Challenger during the years 1873-76, http://www.19thcenturyscience.org/HMSC/HMSC- INDEX/index-linked.htm (accessed 2020-01-02).

[58] S. C. Riser, H. J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belb´eoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, P.Y. Le Traon, G. Maze, B. Klein, M. Ravichandran, F. Grant, P. M. Poulain, T. Suga, B. Lim, A. Sterl, P. Sutton, K. A. Mork, P. J. V´elez-Belch´ı, I. Ansorge, B. King, J. Turton, M. Baringer, S.R. Jayne, Fifteen Years of Ocean Observations with the Global Argo Array, Nature Climate Change, Vol. 6, No. 2, pp. 145-153, 2016.

[59] ISC World Data System (ISC-WDS), http://www.icsu-wds.org (accessed 2020-01- 03).

[60] Japan Oceanographic Data Center (JODC), https://www.jodc.go.jp/jodcweb/ (accessed 2020-01-03).

[61] Japan Argo Real Time Data Base, http://ds.data.jma.go.jp/gmd/argo/data/ (accessed 2020-02-27).

[62] H. Sasaki, P. Klein, B. Qiu, Y. Sasai, Impact of Oceanic-Scale Interactions on the Seasonal Modulation of Ocean Dynamics by the Atmosphere, Nature Communications, Vol.5, pp. 5636-5643, 2014.

[63] D. Menemenlis, I. Fukumori, T. Lee, Using Green’s Functions to Calibrate an Ocean General Circulation Model, Monthly Weather Review, Vol. 133, No. 5, pp. 1224-1240, 2005.

[64] A. T. Nguyen, D. Menemenlis, R. Kwok, Arctic Ice‐ Ocean Simulation with Optimized Model Parameters: Approach and Assessment, Journal of Geophysical Research: Oceans, Vol. 113, 2011.

[65] Y. Sasai, A. Ishida, Y. Yamanaka, H. Sasaki, Chlorofluorocarbons in a Global Ocean Eddy‐ Resolving OGCM: Pathway and Formation of Antarctic Bottom Water, Geophysical Research Letters, Vol. 31, No. 12, 2004.

[66] W. J. Emery, Water Types and Water Masses, Encyclopedia of Ocean Sciences, Vol. 6, pp. 3179-3187, 2001.

[67] K. Hanawa, L. D. Talley, Mode Waters, International Geophysics Series, pp. 373- 386, 2001.

[68] E. Oka, B. Qiu, Progress of North Pacific Mode Water Research in the Past Decade, Journal of Oceanography, Vol. 68, No. 1, pp. 5-20, 2012.

[69] E. Oka, Seasonal and Interannual Variation of North Pacific Subtropical Mode Water in 2003-2006, Journal of Oceanography, Vol. 65, No. 2, pp. 151-164, 2009.

[70] T. Sagawa, Y. Yokoyama, M. Ikehara, M. Kuwae, Vertical Thermal Structure History in the Western Subtropical North Pacific Since the Last Glacial Maximum, Geophysical Research Letters, Vol. 38, No. 8, 2011.

[71] K. Toyama, T. Suga, Vertical Structure of North Pacific Mode Waters, Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 57, pp.1152-1160, 2010.

[72] T. M. Joyce, New Perspectives on Eighteen-Degree Water Formation in the North Atlantic, In New Developments in Mode-Water Research, pp. 41-48, 2011.

[73] M. Nonaka, S. P. Xie, H. Sasaki, Interannual Variations in Low Potential Vorticity Water and the Subtropical Countercurrent in an Eddy-Resolving OGCM, In New Developments in Mode-Water Research, pp. 109-120, 2011.

[74] Network Common Data Form (NetCDF), https://www.unidata.ucar.edu/ software/netcdf/ (accessed 2020-02-09).

[75] P. Ljung, J. Kru¨ger, E. Groller, M. Hadwiger, C. D. Hansen, A. Ynnerman, State of the Art in Transfer Functions for Direct Volume Rendering, In Computer Graphics Forum, Vol. 35, No. 3, pp. 669-691, 2016.

[76] S. Arens, G. Domik, A Survey of Transfer Functions Suitable for Volume Rendering, In Volume Graphics, pp. 77-83, 2010.

[77] J. Beyer, M. Hadwiger, H. Pfister, State‐ of‐ the‐ Art in GPU‐ Based Large‐ Scale Volume Visualization, In Computer Graphics Forum, Vol. 34, No. 8, pp. 13-37, 2015.

[78] W. E. Lorensen, H. E. Cline, Marching Cubes: A High Resolution 3D Surface Construction Algorithm, ACM Siggraph Computer Graphics, Vol. 21, No. 4, pp. 163-169, 1987.

[79] T. S. Newman, H. Yi, A Survey of the Marching Cubes Algorithm, Computers and Graphics, Vol. 30, No. 5, pp. 854-879, 2006.

[80] H. Zhou, M. Chen, M. F. Webster, Comparative Evaluation of Visualization and Experimental Results Using Image Comparison Metrics, IEEE Visualization, pp. 315-322, 2002.

[81] H. J¨anicke, M. Bottinger, U. Mikolajewicz, G. Scheuermann, Visual Exploration of Climate Variability Changes Using Wavelet Analysis, IEEE Transactions on Visualization and Computer Graphics, Vol. 15, No. 6, pp. 1375-1382, 2009.

[82] K. Santilli, K. Bemis, D. Silver, J. Dastur, P. Rona, Generating Realistic Images from Hydrothermal Plume Data, IEEE Visualization, pp. 91-98, 2004.

[83] S. Williams, M. Hecht, M. Petersen, R. Strelitz, M. Maltrud, J. Ahrens, M. Hlawitschka, Hamann, B, Visualization and Analysis of Eddies in a Global Ocean Simulation, In Computer Graphics Forum, Vol. 30, No. 3, pp. 991-1000, 2011.

[84] A. Unger, S. Schulte, V. Klemann, D. Dransch, A Visual Analysis Concept for the Validation of Geoscientific Simulation Models, IEEE Transactions on Visualization and Computer Graphics, Vol. 18, No. 12, pp. 2216-2225, 2012.

[85] J. Kehrer, F. Ladst¨adter, P. Muigg, H. Doleisch, A. Steiner, H. Hauser, Hypothesis Generation in Climate Research with Interactive Visual Data Exploration, IEEE Transactions on Visualization and Computer Graphics, Vol. 14, No. 6, pp. 1579- 1586, 2008.

[86] F. Ladst¨adter, A. K. Steiner, B. C. Lackner, B. Pirscher, G. Kirchengast, J. Kehrer, H. Hauser, P. Muigg, H. Doleisch, Exploration of Climate Data Using Interactive Visualization, Journal of Atmospheric and Oceanic Technology, Vol. 27, No. 4, pp. 667-679, 2010.

[87] J. Poco, A. Dasgupta, Y. Wei, W. Hargrove, C. Schwalm, R. Cook, E. Bertini, C. Silva, SimilarityExplorer: A Visual Inter‐ Comparison Tool for Multifaceted Climate Data, In Computer Graphics Forum, Vol. 33, No. 3, pp. 341-350, 2014.

[88] C. A. Steed, G. Shipman, P. Thornton, D. Ricciuto, D. Erickson, M. Branstetter, Practical Application of Parallel Coordinates for Climate Model Analysis, Procedia Computer Science, Vol. 9, pp. 877-886, 2012.

[89] J. Poco, A. Dasgupta, Y. Wei, W. Hargrove, C. R. Schwalm, D. N. Huntzinger, R. Cook, E. Bertini, C. T. Silva, Visual Reconciliation of Alternative Similarity Spaces in Climate Modeling, IEEE Transactions on Visualization and Computer Graphics, Vol. 20, No. 12, pp. 1923-1932, 2014.

[90] J. Wang, X. Liu, H. W. Shen, G. Lin, Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots, IEEE Transactions on Visualization and Computer Graphics, Vol. 23, No. 1, pp. 81-90, 2016.

[91] A. Dasgupta, H. Wang, N. O’Brien, S. Burrows, Separating the Wheat from the Chaff: Comparative Visual Cues for Transparent Diagnostics of Competing Models, IEEE Transactions on Visualization and Computer Graphics, Vol. 26, No. 1, pp. 1043-1053, 2019.

[92] K. Potter, A. Wilson, P. T. Bremer, D. Williams, C. Doutriaux, V. Pascucci, C. Johhson, Visualization of Uncertainty and Ensemble Data: Exploration of Climate Modeling and Weather Forecast Data with Integrated ViSUS-CDAT Systems, Journal of Physics: Conference Series, Vol. 180, No. 1, pp. 1-5, 2009.

[93] T. Pfaffelmoser, M. Reitinger, R. Westermann, Visualizing the Positional and Geometrical Variability of Isosurfaces in Uncertain Scalar Fields, In Computer Graphics Forum, Vol. 30, No. 3, pp. 951-960, 2011.

[94] F. Hourdin, T. Mauritsen, A. Gettelman, J. C. Golaz, V. Balaji, Q. Duan, D. Folini, D. Ji, D. Klocke, Y. Qian, F. Rauser, C. Rio, L. Tomassini, M. Watanabe, D. Williamson, The Art and Science of Climate Model Tuning, Bulletin of the American Meteorological Society, Vol. 98, No. 3, pp. 589-602, 2017.

[95] Oculus, https://www.oculus.com (accessed 2020-02-10).

[96] Unity, https://unity.com (accessed 2020-02-10).

[97] T. Nocke, T. Sterzel, M. B¨ottinger, M. Wrobel, Visualization of Climate and Climate Change Data: An Overview, Digital Earth Summit on Geoinformatics, pp. 226-232, 2008.

[98] T. Nocke, M. Flechsig, U. Bohm, Visual Exploration and Evaluation of Climate- Related Simulation Data, In Winter Simulation Conference, pp. 703-711, 2007.

[99] D. R. Lip¸sa, R. S. Laramee, S. J. Cox, J. C. Roberts, R. Walker, M. A. Borkin, H. Pfister, Visualization for the Physical Sciences, In Computer Graphics Forum, Vol. 31, No. 8, pp. 2317-2347, 2012.

[100] P. K¨othur, M. Sips, H. Dobslaw, D. Dransch, Visual Analytics for Comparison of Ocean Model Output with Reference Data: Detecting and Analyzing Geophysical Processes Using Clustering Ensembles, IEEE Transactions on Visualization and Computer Graphics, Vol. 20, No. 12, pp. 1893-1902, 2014.

[101] T. Tsubouchi, T. Suga, K. Hanawa, Comparison Study of Subtropical Mode Waters in the World Ocean, Frontiers in Marine Science, Vol. 3, Article 270, pp. 1-15, 2016.

[102] C. Feucher, G. Maze, H. Mercier, Subtropical Mode Water and Permanent Pycnocline Properties in the World Ocean, Journal of Geophysical Research: Oceans, Vol. 124, No. 2, pp. 1139-1154, 2019.

[103] G. Flato, J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Erying, C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason, M. Rummukainen et al., Evaluation of Climate Models, In Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 741-866, 2014.

[104] S. Takahashi, Y. Takeshima, I. Fujishiro, Topological Volume Skeletonization and Its Application to Transfer Function Design, Graphical Models, Vol. 66, No. 1, pp. 24-49, 2004.

[105] H. Sundar, D. Silver, N. Gagvani, S. Dickinson, Skeleton Based Shape Matching and Retrieval, In 2003 Shape Modeling International, pp. 130-139, 2003.

[106] B. Bustos, D. A. Keim, D. Saupe, T. Schreck, D. V. Vrani´c, Feature-Based Similarity Search in 3D Object Databases, ACM Computing Surveys (CSUR), Vol. 37, No. 4, pp. 345-387, 2005.

[107] R. Osada, T. Funkhouser, B. Chazelle, D. Dobkin, Shape Distributions, ACM Transactions on Graphics (TOG), Vol. 21, No. 4, pp. 807-832, 2002.

[108] B. Leng, Z. Qin, A Powerful Relevance Feedback Mechanism for Content-Based 3D Model Retrieval, Multimedia Tools and Applications, Vol. 40, No. 1, pp. 135- 150, 2008.

[109] K. L. Ma, A. Stompel, J. Bielak, O. Ghattas, E. J. Kim, Visualizing Very Large- Scale Earthquake Simulations, In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, pp. 48-60, 2003.

[110] H. Yu, K. L. Ma, J. Welling, A Parallel Visualization Pipeline for Terascale Earthquake Simulations, In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, pp. 49-60, 2004.

[111] K. Reda, P. Nalawade, K. Ansah-Koi, Graphical Perception of Continuous Quantitative Maps: the Effects of Spatial Frequency and Colormap Design, In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1-12, 2018.

[112] K. M. Thyng, C. A. Greene, R. D. Hetland, H. M. Zimmerle, S. F. DiMarco, True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection, Oceanography, Vol. 29, No. 3, pp. 9-13, 2016.

[113] P. O’Leary, J. Ahrens, S. Jourdain, S. Wittenburg, D. H. Rogers, M. Petersen, Cinema Image-Based in Situ Analysis and Visualization of MPAS-Ocean Simulations, Parallel Computing, Vol. 55, pp. 43-48, 2016.

[114] F. Samsel, M. Petersen, G. Abram, T. L. Turton, D. Rogers, J. Ahrens, Visualization of Ocean Currents and Eddies in a High-Resolution Global Ocean-Climate Model, In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Vol. 2, No. 3, 2015.

[115] J. Mart´ın-Guti´errez, C. E. Mora, B. An˜orbe-D´ıaz, A. Gonz´alez-Marrero, Virtual Technologies Trends in Education, EURASIA Journal of Mathematics Science and Technology Education, Vol. 13, No. 2, pp. 469-486, 2017.

参考文献をもっと見る