リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel SLC30A2 mutations in the pathogenesis of transient neonatal zinc deficiency」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel SLC30A2 mutations in the pathogenesis of transient neonatal zinc deficiency

Muto, Taichiro Kawase, Yuriko Aiba, Kaori Okuma, Miyuki Itsumura, Naoya Luo, Shuangyu Ogawa, Namino Tsuji, Tokuji Kambe, Taiho 京都大学 DOI:10.1002/ped4.12366

2023.03

概要

[Importance] Transient neonatal zinc deficiency (TNZD) occurs in breastfed infants due to abnormally low breast milk zinc levels. Mutations in the solute carrier family 30 member 2 (SLC30A2) gene, which encodes the zinc transporter ZNT2, cause low zinc concentration in breast milk. [Objective] This study aimed to provide further insights into TNZD pathophysiology. [Methods] SLC30A2 sequencing was performed in three unrelated Japanese mothers, whose infants developed TNZD due to low-zinc milk consumption. The effects of the identified mutations were examined using cell-based assays and luciferase reporter analysis. [Results] Novel SLC30A2 mutations were identified in each mother. One harbored a heterozygous missense mutation in the ZNT2 zinc-binding site, which resulted in defective zinc transport. The other two mothers exhibited multiple heterozygous mutations in the SLC30A2 promoter, the first mutations in the SLC30A2 regulatory region reported to date. [Interpretation] This report provides new genetic insights into TNZD pathogenesis in breastfed infants.

この論文で使われている画像

参考文献

1. Kelleher SL, Seo YA, Lopez V. Mammary gland zinc

metabolism: regulation and dysregulation. Genes Nutr.

2009;4:83-94. DOI: 10.1007/s12263-009-0119-4

2. Kelleher SL, McCormick NH, Velasquez V, Lopez V.

Zinc in specialized secretory tissues: roles in the pancreas,

prostate, and mammary gland. Adv Nutr. 2011;2:101-111.

DOI: 10.3945/an.110.000232

3. Ackland ML, Michalczyk AA. Zinc and infant nutrition.

Arch Biochem Biophys. 2016;611:51-57. DOI: 10.1016/j.

abb.2016.06.011

4. Golan Y, Kambe T, Assaraf YG. The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency.

Metallomics. 2017;9:1352-1366. DOI: 10.1039/c7mt00162b

5. King NY, Gach JE. Transient neonatal zinc deficiency in

an infant. Clin Exp Dermatol. 2021;46:1650-1652. DOI:

10.1111/ced.14755

6. Kambe T, Fukue K, Ishida R, Miyazaki S. Overview of

inherited zinc deficiency in infants and children. J Nutr

Sci Vitaminol. 2015;61(Suppl):S44-46. DOI: 10.3177/jnsv.

61.S44

7. Kasana S, Din J, Maret W. Genetic causes and gene–nutrient

interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as

examples. J Trace Elem Med Biol. 2015;29:47-62. DOI:

10.1016/j.jtemb.2014.10.003

8. Maverakis E, Fung MA, Lynch PJ, Draznin M, Michael

DJ, Ruben B, et al. Acrodermatitis enteropathica and

an overview of zinc metabolism. J Am Acad Dermatol.

2007;56:116-124. DOI: 10.1016/j.jaad.2006.08.015

9. Schmitt S, Küry S, Giraud M, Dréno B, Kharfi M, Bézieau

S. An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum Mutat. 2009;30:926-933. DOI:

10.1002/humu.20988

10. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J. A novel

member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002;71:66-73.

DOI: 10.1086/341125

11. Küry S, Dréno B, Bézieau S, Giraudet S, Kharfi M, Kamoun

R, et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002;31:239-240. DOI:

10.1038/ng913

12. Chowanadisai W, Lönnerdal B, Kelleher SL. Identification

of a mutation in SLC30A2 (ZnT-2) in women with low

milk zinc concentration that results in transient neonatal

zinc deficiency. J Biol Chem. 2006;281:39699-39707. DOI:

10.1074/jbc.M605821200

13. Lasry I, Seo YA, Ityel H, Shalva N, Pode-Shakked B, Glaser

F, et al. A dominant negative heterozygous G87R mutation

in the zinc transporter, ZnT-2 (SLC30A2), results in transient

neonatal zinc deficiency. J Biol Chem. 2012;287:2934829361. DOI: 10.1074/jbc.M112.368159

14. Itsumura N, Inamo Y, Okazaki F, Teranishi F, Narita H,

Kambe T, et al. Compound heterozygous mutations in

SLC30A2/ZnT2 results in low milk zinc concentrations:

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

a novel mechanism for zinc deficiency in a breast-fed

infant. PLoS One. 2013;8:e64045. DOI: 10.1371/journal.

pone.0064045

Miletta MC, Bieri A, Kernland K, Schöni MH, Petkovic

V, Flück CE, et al. Transient neonatal zinc deficiency

caused by a heterozygous G87R mutation in the zinc transporter ZnT-2 (SLC30A2) gene in the mother highlighting

the importance of Zn2+ for normal growth and development.

Int J Endocrinol. 2013;2013:259189. DOI: 10.1155/2013/

259189

Lova Navarro M, Vera Casaño A, Benito López C, Fernández

Ballesteros MD, Godoy Díaz DJ, Crespo Erchiga A, et al.

Transient neonatal zinc deficiency due to a new autosomal dominant mutation in gene SLC30A2 (ZnT-2). Pediatr

Dermatol. 2014;31:251-252. DOI: 10.1111/pde.12257

Kambe T, Hashimoto A, Fujimoto S. Current understanding

of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci. 2014;71:3281-3295. DOI: 10.1007/

s00018-014-1617-0

Rokunohe D, Nakano H, Sawamura D. Transient neonatal zinc deficiency (in Japanese). Jpn J Clin Dermatol.

2015;69:27-30.

Obara T, Komatsu N, Itsumura N, Kambe T, Muto Y,

Nishihara, T, et al. Zinc deficiency in low zinc breast milk

related to maternal ZnT2 gene mutation (in Japanese). J Jpn

Pediatr Soc. 2016;120:1649-1656.

Liew HM, Tan CW, Ho CK, Chee JN, Koh MJ. Transient

neonatal zinc deficiency caused by a novel mutation in the

SLC30A2 gene. Pediatr Dermatol. 2017;34:e104-e105. DOI:

10.1111/pde.13065

Li Z, Wang J, Yang Y, Wang S. A novel homozygous mutation p.E88K in maternal SLC30A2 gene as a

cause of transient neonatal zinc deficiency. Exp Dermatol.

2020;29:556-561. DOI: 10.1111/exd.14099

Kambe T. Molecular architecture and function of ZnT transporters. Curr Top Membr. 2012;69:199-220. DOI: 10.1016/

B978-0-12-394390-3.00008-2

Kambe T, Taylor KM, Fu D. Zinc transporters and their

functional integration in mammalian cells. J Biol Chem.

2021;296:100320. DOI: 10.1016/j.jbc.2021.100320

Itsumura N, Kibihara Y, Fukue K, Miyata A, Fukushima K,

Tamagawa-Mineoka R, et al. Novel mutations in SLC30A2

involved in the pathogenesis of transient neonatal zinc deficiency. Pediatr Res. 2016;80:586-594. DOI: 10.1038/pr.

2016.108

Fujimoto S, Itsumura N, Tsuji T, Anan Y, Tsuji N, Ogra

Y, et al. Cooperative functions of ZnT1, metallothionein

and ZnT4 in the cytoplasm are required for full activation of TNAP in the early secretory pathway. PLoS One.

2013;8:e77445. DOI: 10.1371/journal.pone.0077445

Tsuji T, Kurokawa Y, Chiche J, Pouysségur J, Sato H,

Fukuzawa H, et al. Dissecting the process of activation

of cancer-promoting zinc-requiring ectoenzymes by zinc

metalation mediated by ZNT transporters. J Biol Chem.

2017;292:2159-2173. DOI: 10.1074/jbc.M116.763946

Golan Y, Itsumura N, Glaser F, Berman B, Kambe T, Assaraf

YG. Molecular basis of transient neonatal zinc deficiency:

Novel ZnT2 mutations disrupting zinc binding and permeation. J Biol Chem. 2016;291:13546-13559. DOI: 10.1074/

jbc.M116.732693

25742272, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ped4.12366 by Cochrane Japan, Wiley Online Library on [19/04/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Pediatr Investig 2023 Mar; 7(1): 6–12

28. Wagatsuma T, Shimotsuma K, Sogo A, Sato R, Kubo N,

Ueda S, et al. Zinc transport via ZNT5-6 and ZNT7 is critical for cell surface glycosylphosphatidylinositol-anchored

protein expression. J Biol Chem. 2022;298:102011. DOI:

10.1016/j.jbc.2022.102011

29. Barber-Zucker S, Shaanan B, Zarivach R. Transition metal

binding selectivity in proteins and its correlation with the

phylogenomic classification of the cation diffusion facilitator

protein family. Sci Rep. 2017;7:16381. DOI: 10.1038/

s41598-017-16777-5

30. Lu YJ, Liu YC, Lin MC, Chen YT, Lin LY. Coordinative

modulation of human zinc transporter 2 gene expression

through active and suppressive regulators. J Nutr Biochem.

2015;26:351-359. DOI: 10.1016/j.jnutbio.2014.11.009

31. Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio

M, Dembic Z, et al. Cloned transcription factor MTF1 activates the mouse metallothionein I promoter. EMBO

J. 1993;12:1355-1362. DOI: 10.1002/j.1460-2075.1993.

tb05780.x

wileyonlinelibrary.com/journal/ped4

32. Andrews GK. Cellular zinc sensors: MTF-1 regulation of

gene expression. Biometals. 2001;14:223-237. DOI: 10.

1023/a:1012932712483

33. Kodama H, Inamo Y. Infant zinc deficiency due to low

zinc concentration in maternal breast-milk (in Japanese).

Endocrinol diabetol Metab. 2016;43:103-107.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in

the supporting information tab for this article.

How to cite this article: Muto T, Kawase Y, Aiba K, Okuma M,

Itsumura N, Luo S, et al. Novel SLC30A2 mutations in the pathogenesis of transient neonatal zinc deficiency. Pediatr Investig.

2023;7:6–12. https://doi.org/10.1002/ped4.12366

25742272, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ped4.12366 by Cochrane Japan, Wiley Online Library on [19/04/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る