リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Concomitant lansoprazole ameliorates cisplatin-induced nephrotoxicity by inhibiting renal organic cation transporter 2 in rats」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Concomitant lansoprazole ameliorates cisplatin-induced nephrotoxicity by inhibiting renal organic cation transporter 2 in rats

Hiramatsu Shun-ichi 三重大学

2021.01.05

概要

Cisplatin is widely used for the treatment of multiple solid tumors. Cisplatin-induced nephrotoxicity is caused by renal accumulation of cisplatin via human organic cation transporter 2 (hOCT2). As lansoprazole (LPZ), a proton pump inhibitor (PPI), is known to inhibit hOCT2 activity, LPZ might ameliorate cisplatin-induced nephrotoxicity. Previous study showed that concomitant LPZ administration ameliorated nephrotoxicity in patients receiving cisplatin. However, the detailed mechanism remains to be clarified. In the present study, the drug-drug interaction between LPZ and cisplatin was examined using hOCT2-expressing cultured cells and rat renal slices. Moreover, we investigated the effect of LPZ on cisplatin-induced nephrotoxicity and pharmacokinetics of cisplatin in rats. In the uptake study, LPZ potently inhibited uptake of cisplatin in hOCT2-expressing cultured cells and rat renal slices. In vivo rat study showed that concomitant LPZ significantly ameliorated cisplatin-induced nephrotoxicity and reduced renal accumulation of platinum (Pt) up to approximately 60% of cisplatin alone at 72 h after cisplatin intraperitoneal administration. Furthermore, renal uptake of Pt at 3 min after intravenous cisplatin administration in rats with cisplatin and LPZ decreased to 78% of rats with cisplatin alone. In addition, there was no significant difference in plasma Pt concentration between rats treated with and without LPZ at 3 min after cisplatin intravenous administration. These findings suggested that concomitant LPZ ameliorated cisplatin-induced nephrotoxicity by inhibiting rOCT2-mediated cisplatin uptake in rats, thus decreasing cisplatin accumulation in the kidney. The present findings provided important information for the establishment of novel protective approaches to minimize cisplatin-induced nephrotoxicity.

参考文献

Abd El-Kader, M., & Taha, R. I. (2020). Comparative nephroprotective effects of curcumin

and etoricoxib against cisplatin-induced acute kidney injury in rats. Acta

Histochemica, 122(4), 151534. doi:10.1016/j.acthis.2020.151534

Alibakhshi, T., Khodayar, M. J., Khorsandi, L., Rashno, M., & Zeidooni, L. (2018).

Protective effects of zingerone on oxidative stress and inflammation in cisplatininduced rat nephrotoxicity. Biomedicine and Pharmacotherapy, 105, 225-232.

doi:10.1016/j.biopha.2018.05.085

Arakawa, H., Kubo, H., Washio, I., Staub, A. Y., Nedachi, S., Ishiguro, N., . . . Tamai, I.

(2019). Rat Kidney Slices for Evaluation of Apical Membrane Transporters in

Proximal Tubular Cells. Journal of Pharmaceutical Sciences, 108(8), 2798-2804.

doi:10.1016/j.xphs.2019.03.031

Arany, I., & Safirstein, R. L. (2003). Cisplatin nephrotoxicity. Seminars in Nephrology, 23(5),

460-464.

Berndt, W. O. (1976). Use of the tissue slice technique for evaluation of renal transport

processes. Environmental Health Perspectives, 15, 73-88. doi:10.1289/ehp.761573

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram

quantities of protein utilizing the principle of protein-dye binding. Analytical

Biochemistry, 72, 248-254. doi:10.1006/abio.1976.9999

Ciarimboli, G., Deuster, D., Knief, A., Sperling, M., Holtkamp, M., Edemir, B., . . . Schlatter,

E. (2010). Organic cation transporter 2 mediates cisplatin-induced oto- and

nephrotoxicity and is a target for protective interventions. American Journal of

Pathology, 176(3), 1169-1180. doi:10.2353/ajpath.2010.090610

de Jongh, F. E., van Veen, R. N., Veltman, S. J., de Wit, R., van der Burg, M. E., van den

Bent, M. J., . . . Verweij, J. (2003). Weekly high-dose cisplatin is a feasible treatment

18

option: analysis on prognostic factors for toxicity in 400 patients. British Journal of

Cancer, 88(8), 1199-1206. doi:10.1038/sj.bjc.6600884

Ding, Y., Jia, Y., Song, Y., Lu, C., Li, Y., Chen, M., . . . Wen, A. (2014). The effect of

lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects.

European Journal of Clinical Pharmacology, 70(2), 141-146. doi:10.1007/s00228013-1604-7

Dobyan, D. C., Levi, J., Jacobs, C., Kosek, J., & Weiner, M. W. (1980). Mechanism of cisplatinum nephrotoxicity: II. Morphologic observations. Journal of Pharmacology and

Experimental Therapeutics, 213(3), 551-556.

Gao, H., Zhang, S., Hu, T., Qu, X., Zhai, J., Zhang, Y., . . . Song, Y. (2019). Omeprazole

protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress,

inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2cells.

Chemico-Biological Interactions, 297, 130-140. doi:10.1016/j.cbi.2018.11.008

Go, R. S., & Adjei, A. A. (1999). Review of the comparative pharmacology and clinical

activity of cisplatin and carboplatin. Journal of Clinical Oncology, 17(1), 409-422.

doi:10.1200/JCO.1999.17.1.409

Gorboulev, V., Ulzheimer, J. C., Akhoundova, A., Ulzheimer-Teuber, I., Karbach, U., Quester,

S., . . . Koepsell, H. (1997). Cloning and characterization of two human polyspecific

organic cation transporters. DNA and Cell Biology, 16(7), 871-881.

doi:10.1089/dna.1997.16.871

Grundemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., & Koepsell, H. (1994). Drug

excretion mediated by a new prototype of polyspecific transporter. Nature, 372(6506),

549-552. doi:10.1038/372549a0

Guo, D., Yang, H., Li, Q., Bae, H. J., Obianom, O., Zeng, S., . . . Shu, Y. (2018). Selective

Inhibition on Organic Cation Transporters by Carvedilol Protects Mice from

19

Cisplatin-Induced Nephrotoxicity. Pharmaceutical Research, 35(11), 204.

doi:10.1007/s11095-018-2486-2

Hacker, K., Maas, R., Kornhuber, J., Fromm, M. F., & Zolk, O. (2015). Substrate-Dependent

Inhibition of the Human Organic Cation Transporter OCT2: A Comparison of

Metformin with Experimental Substrates. PloS One, 10(9), e0136451.

doi:10.1371/journal.pone.0136451

Hanada, K., Ninomiya, K., & Ogata, H. (2000). Pharmacokinetics and toxicodynamics of

cisplatin and its metabolites in rats: relationship between renal handling and

nephrotoxicity of cisplatin. Journal of Pharmacy and Pharmacology, 52(11), 13451353. doi:10.1211/0022357001777496

Homma, A., Inamura, N., Oridate, N., Suzuki, S., Hatakeyama, H., Mizumachi, T., . . .

Fukuda, S. (2011). Concomitant weekly cisplatin and radiotherapy for head and neck

cancer. Japanese Journal of Clinical Oncology, 41(8), 980-986.

doi:10.1093/jjco/hyr086

Ieiri, I., Kishimoto, Y., Okochi, H., Momiyama, K., Morita, T., Kitano, M., . . . Ishizaki, T.

(2001). Comparison of the kinetic disposition of and serum gastrin change by

lansoprazole versus rabeprazole during an 8-day dosing scheme in relation to

CYP2C19 polymorphism. European Journal of Clinical Pharmacology, 57(6-7), 485492. doi:10.1007/s002280100342

Ikemura, K., Oshima, K., Enokiya, T., Okamoto, A., Oda, H., Mizuno, T., . . . Okuda, M.

(2017). Co-administration of proton pump inhibitors ameliorates nephrotoxicity in

patients receiving chemotherapy with cisplatin and fluorouracil: a retrospective cohort

study. Cancer Chemotherapy and Pharmacology, 79(5), 943-949.

doi:10.1007/s00280-017-3296-7

Ito, S., Kusuhara, H., Yokochi, M., Toyoshima, J., Inoue, K., Yuasa, H., & Sugiyama, Y.

20

(2012). Competitive inhibition of the luminal efflux by multidrug and toxin

extrusions, but not basolateral uptake by organic cation transporter 2, is the likely

mechanism underlying the pharmacokinetic drug-drug interactions caused by

cimetidine in the kidney. Journal of Pharmacology and Experimental Therapeutics,

340(2), 393-403. doi:10.1124/jpet.111.184986

Iwata, K., Aizawa, K., Kamitsu, S., Jingami, S., Fukunaga, E., Yoshida, M., . . . Saito, H.

(2012). Effects of genetic variants in SLC22A2 organic cation transporter 2 and

SLC47A1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse

events. Clinical and Experimental Nephrology, 16(6), 843-851. doi:10.1007/s10157012-0638-y

Kim, A., Chung, I., Yoon, S. H., Yu, K. S., Lim, K. S., Cho, J. Y., . . . Chung, J. Y. (2014).

Effects of proton pump inhibitors on metformin pharmacokinetics and

pharmacodynamics. Drug Metabolism and Disposition: The Biological Fate of

Chemicals, 42(7), 1174-1179. doi:10.1124/dmd.113.055616

Litterst, C. L., Gram, T. E., Dedrick, R. L., Leroy, A. F., & Guarino, A. M. (1976).

Distribution and disposition of platinum following intravenous administration of cisdiamminedichloroplatinum(II) (NSC 119875) to dogs. Cancer Research, 36(7 PT 1),

2340-2344.

Martel, F., Vetter, T., Russ, H., Grundemann, D., Azevedo, I., Koepsell, H., & Schomig, E.

(1996). Transport of small organic cations in the rat liver. The role of the organic

cation transporter OCT1. Naunyn-Schmiedebergs Archives of Pharmacology, 354(3),

320-326. doi:10.1007/bf00171063

Nakamura, T., Yonezawa, A., Hashimoto, S., Katsura, T., & Inui, K. (2010). Disruption of

multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity.

Biochemical Pharmacology, 80(11), 1762-1767. doi:10.1016/j.bcp.2010.08.019

21

Nies, A. T., Hofmann, U., Resch, C., Schaeffeler, E., Rius, M., & Schwab, M. (2011). Proton

pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PloS

One, 6(7), e22163. doi:10.1371/journal.pone.0022163

Pabla, N., & Dong, Z. (2008). Cisplatin nephrotoxicity: mechanisms and renoprotective

strategies. Kidney International, 73(9), 994-1007. doi:10.1038/sj.ki.5002786

Smelick, G. S., Heffron, T. P., Chu, L., Dean, B., West, D. A., Duvall, S. L., . . . Ware, J. A.

(2013). Prevalence of acid-reducing agents (ARA) in cancer populations and ARA

drug-drug interaction potential for molecular targeted agents in clinical development.

Molecular Pharmaceutics, 10(11), 4055-4062. doi:10.1021/mp400403s

Tahara, H., Kusuhara, H., Endou, H., Koepsell, H., Imaoka, T., Fuse, E., & Sugiyama, Y.

(2005). A species difference in the transport activities of H2 receptor antagonists by

rat and human renal organic anion and cation transporters. Journal of Pharmacology

and Experimental Therapeutics, 315(1), 337-345. doi:10.1124/jpet.105.088104

Tanihara, Y., Masuda, S., Katsura, T., & Inui, K. (2009). Protective effect of concomitant

administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal

organic cation transporter OCT2. Biochemical Pharmacology, 78(9), 1263-1271.

doi:10.1016/j.bcp.2009.06.014

Targownik, L. E., Metge, C., Roos, L., & Leung, S. (2007). The prevalence of and the clinical

and demographic characteristics associated with high-intensity proton pump inhibitor

use. American Journal of Gastroenterology, 102(5), 942-950. doi:10.1111/j.15720241.2007.01106.x

Tsuda, M., Terada, T., Ueba, M., Sato, T., Masuda, S., Katsura, T., & Inui, K. (2009).

Involvement of human multidrug and toxin extrusion 1 in the drug interaction

between cimetidine and metformin in renal epithelial cells. Journal of Pharmacology

and Experimental Therapeutics, 329(1), 185-191. doi:10.1124/jpet.108.147918

22

Urakami, Y., Nakamura, N., Takahashi, K., Okuda, M., Saito, H., Hashimoto, Y., & Inui, K.

(1999). Gender differences in expression of organic cation transporter OCT2 in rat

kidney. FEBS Letters, 461(3), 339-342. doi:10.1016/s0014-5793(99)01491-x

Urien, S., & Lokiec, F. (2004). Population pharmacokinetics of total and unbound plasma

cisplatin in adult patients. British Journal of Clinical Pharmacology, 57(6), 756-763.

doi:10.1111/j.1365-2125.2004.02082.x

Yonezawa, A., & Inui, K. (2011). Organic cation transporter OCT/SLC22A and H(+)/organic

cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum

agents. Biochemical Pharmacology, 81(5), 563-568. doi:10.1016/j.bcp.2010.11.016

Yonezawa, A., Masuda, S., Nishihara, K., Yano, I., Katsura, T., & Inui, K. (2005). Association

between tubular toxicity of cisplatin and expression of organic cation transporter

rOCT2 (Slc22a2) in the rat. Biochemical Pharmacology, 70(12), 1823-1831.

doi:10.1016/j.bcp.2005.09.020

Yonezawa, A., Masuda, S., Yokoo, S., Katsura, T., & Inui, K. (2006). Cisplatin and

oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic

cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). Journal of

Pharmacology and Experimental Therapeutics, 319(2), 879-886.

doi:10.1124/jpet.106.110346

Zolk, O., Solbach, T. F., Konig, J., & Fromm, M. F. (2009). Functional characterization of the

human organic cation transporter 2 variant p.270Ala>Ser. Drug Metabolism and

Disposition: The Biological Fate of Chemicals, 37(6), 1312-1318.

doi:10.1124/dmd.108.023762

23

Figure legends

Figure 1. Uptake of [14C]TEA in HEK-hOCT2 and HEK-vector cells. HEK-hOCT2

(closed column) or HEK-vector (open column) cells were incubated with [14C]TEA (5 µM,

pH 7.4) for 2 min at 37°C. Each point represents the mean ± S.E. of three separate

experiments using three monolayers. ***: p < 0.001 compared with HEK-vector cells. When

the standard errors of the means are small, they are contained within the columns.

Figure 2. Time course of cisplatin uptake in HEK-hOCT2 cells. HEK-hOCT2 (closed

circles) or HEK-vector (open circles) cells were incubated with cisplatin (10 µM, pH 7.4) for

the specified duration (2, 15, 30, and 60 min) at 37°C. Each point represents the mean ± S.E.

of three separate experiments using three monolayers. **: p < 0.01, ***: p < 0.001 compared

with HEK-vector cells. When the standard errors of the means were small, error bars are

hidden behind the symbols.

Figure 3. Inhibition of LPZ and cimetidine on hOCT2-mediated transport of cisplatin.

HEK-hOCT2 cells were incubated at 37°C for 5 min with cisplatin (1 µM) in the absence or

presence of LPZ (100 µM) or cimetidine (100 µM). Each point represents the mean ± S.E. of

three separate experiments using three monolayers. ***: p < 0.001 compared with Control

(vehicle).

Figure 4. Time course of Pt uptake in rat renal slices. Renal slices were incubated with

cisplatin (50 µM, pH 7.5) at 25ºC (closed circles) and 4ºC (open circles) for the specified

duration (5, 10, and 20 min). Each point represents the mean ± S.E. of three separate

experiments using three slices. **: p < 0.01, ***: p < 0.001 compared with 4ºC. When the

standard deviation of the means were small, error bars are hidden behind the symbols.

24

Figure 5. Inhibition of LPZ and cimetidine on the uptake of Pt in rat renal slices. Renal

slices were incubated with cisplatin (50 µM, pH 7.5) at 25ºC for 5 min in the absence or

presence of LPZ (100 μM) or cimetidine (100 µM). Each point represents the mean ± S.E. of

three separate experiments using three slices. **: p < 0.01 compared with Control.

Figure 6. Effect of concomitant LPZ administration on renal Pt accumulation at 72 h

after cisplatin (7.5 mg/kg, i.p.) administration in rats. Each column represents the mean ±

S.D. of five rats. **: p < 0.01, ***: p < 0.001 compared with cisplatin rats.

Figure 7. Effect of concomitant LPZ (2 mg/kg) and cimetidine (20 mg/kg)

administration on the pharmacokinetics of Pt within 3 min after cisplatin (1 mg/kg)

intravenous administration in rats. (A) Plasma concentration-time profiles of Pt. (B) Renal

Pt accumulation. Each point and column represent the mean ± S.D. of five rats. *: p < 0.05, **:

p < 0.01 compared with Control (cisplatin only) rats. Control rats (open circles), Cisplatin +

LPZ rats (closed circles), and Cisplatin + Cimetidine rats (closed squares)

25

Table

Table 1. Renal functions in rats at 72 h after intraperitoneal administration cisplatin

Pcr (mg/dL)

Cisplatin + LPZ

Cisplatin + LPZ

(1 mg/kg)

(2 mg/kg)

Sham

Cisplatin

0.4 ± 0.0

1.3 ± 0.1***

1.1 ± 0.2 ***, #

0.8 ± 0.1 *** ,### ,††

4.0 ± 0.4

1.3 ± 0.2 ***

2.2 ± 0.3 ***, ##

2.8 ± 0.3 ***, ###, †

11 ± 1

97 ± 7 ***

51 ± 17 ***, ###

37 ± 9 **, ###

2.3 ± 1.3

76.4 ± 31.2 ***

2.9 ± 1.8 ###

2.6 ± 2.4 ###

CLcr

(mL/min/kg)

BUN (mg/dL)

Urinary L-FABP

(µg/g creatinine)

Results are mean ± S.D. of five rats. **: p < 0.01, ***: p < 0.001 compared with Sham rats, #: p

< 0.05,

##

: p < 0.01,

###

: p < 0.001 compared with Cisplatin rats, †: p < 0.05,

††

: p < 0.01

compared with Cisplatin + LPZ (1 mg/kg) rats.

BUN: blood urea nitrogen, CLcr: creatinine clearance, L-FABP: liver-type fatty acid binding

protein, LPZ: lansoprazole, Pcr: plasma creatinine

26

Figure1

:lp~]

50

11

<WL[

(U!Wl/U!8lOJd6

20

E-1

JOa

HEK-vector

HEK-hOCT2

27

Figure2

150

(u1a10﹄d 6

E-1

u11e1ds1~10

a)letdn

50

0 25

15

30

Time(

28

60

***

***

。~·

75

29

50

25

oク

Figure 3

hOCT2-mediateduptake

fc

n(%ofC

Figure4

086

10

(a~ns

E-1

JdJOa}leJd

20

Time(

30

Figure5

e100

~、

も 75

: 50LI

Q. 2

~oヽ

‘1,

~べ~

ぐふ

31

e6

30

00

21

(J{aupp16

UO!Je1nwn:>:>eJd1eua”

+LPZ(mg/kg)

32

Figure7

-1E/6ri)

..•...•.

.* * *

. * *

•••••.-

'•i

>l

dewse1d

100

Timea

ra

n(

1 6/6rl)

el

1eua~

33

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る