リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Elucidating drug modes of action through transcription factor binding profiling」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Elucidating drug modes of action through transcription factor binding profiling

Zou, Zhaonan 京都大学 DOI:10.14989/doctor.k24534

2023.03.23

概要

Elucidating the modes of action (MoAs) of drugs and candidate compounds is critical
for guiding translation from drug discovery to clinical application. Understanding the
complex responses of the human biological system to chemicals is of vital importance
in medical and pharmaceutical research. For many chemicals, including some approved
drugs, the MoAs remain elusive. The task of revealing MoAs can be moderately
© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. ...

この論文で使われている画像

参考文献

1. Johnson,D.S., Mortazavi,A., Myers,R.M. and Wold,B. (2007)

Genome-wide mapping of in vivo protein-DNA interactions. Science,

316, 1497–1502.

2. Boyle,A.P., Davis,S., Shulha,H.P., Meltzer,P., Margulies,E.H.,

Weng,Z., Furey,T.S. and Crawford,G.E. (2008) High-resolution

mapping and characterization of open chromatin across the genome.

Cell, 132, 311–322.

3. Oki,S., Ohta,T., Shioi,G., Hatanaka,H., Ogasawara,O., Okuda,Y.,

Kawaji,H., Nakaki,R., Sese,J. and Meno,C. (2018) ChIP-Atlas: a

data-mining suite powered by full integration of public chip-seq data.

EMBO Rep., 19, e46255.

4. Bird,A. (2002) DNA methylation patterns and epigenetic memory.

Genes Dev., 16, 6–21.

5. Cedar,H. and Bergman,Y. (2012) Programming of DNA methylation

patterns. Annu. Rev. Biochem., 81, 97–117.

6. Owen-Hughes,T. and Gkikopoulos,T. (2012) Making sense of

transcribing chromatin. Curr. Opin. Cell Biol., 24, 296–304.

7. Li,B., Carey,M. and Workman,J.L. (2007) The role of chromatin

during transcription. Cell, 128, 707–719.

8. Giresi,P.G., Kim,J., McDaniell,R.M., Iyer,V.R. and Lieb,J.D. (2007)

FAIRE (formaldehyde-assisted isolation of regulatory elements)

isolates active regulatory elements from human chromatin. Genome

Res., 17, 877–885.

9. Buenrostro,J.D., Giresi,P.G., Zaba,L.C., Chang,H.Y. and

Greenleaf,W.J. (2013) Transposition of native chromatin for fast and

sensitive epigenomic profiling of open chromatin, DNA-binding

proteins and nucleosome position. Nat. Methods, 10, 1213–1218.

10. Frommer,M., McDonald,L.E., Millar,D.S., Collis,C.M., Watt,F.,

Grigg,G.W., Molloy,P.L. and Paul,C.L. (1992) A genomic sequencing

protocol that yields a positive display of 5-methylcytosine residues in

individual DNA strands. Proc. Nat. Acad. Sci. U.S.A., 89, 1827–1831.

11. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment

with Bowtie 2. Nat. Methods, 9, 357–359.

12. Zhang,Y., Liu,T., Meyer,C.A., Eeckhoute,J., Johnson,D.S.,

Bernstein,B.E., Nussbaum,C., Myers,R.M., Brown,M., Li,W. et al.

(2008) Model-based analysis of chip-Seq (MACS). Genome Biol., 9,

R137.

13. Miura,F., Enomoto,Y., Dairiki,R. and Ito,T. (2012)

Amplification-free whole-genome bisulfite sequencing by

post-bisulfite adaptor tagging. Nucleic Acids Res., 40, e136.

14. Song,Q., Decato,B., Hong,E.E., Zhou,M., Fang,F., Qu,J., Garvin,T.,

Kessler,M., Zhou,J. and Smith,A.D. (2013) A reference methylome

database and analysis pipeline to facilitate integrative and

comparative epigenomics. PLoS One, 8, e81148.

15. Navarro Gonzalez,J., Zweig,A.S., Speir,M.L., Schmelter,D.,

Rosenbloom,K.R., Raney,B.J., Powell,C.C., Nassar,L.R.,

Maulding,N.D., Lee,C.M. et al. (2021) The UCSC genome browser

database: 2021 update. Nucleic Acids Res., 49, D1046–D1057.

16. Thorvaldsdottir,H.,

Robinson,J.T. and Mesirov,J.P. (2013) Integrative

genomics viewer (IGV): high-performance genomics data

visualization and exploration. Brief. Bioinf., 14, 178–192.

17. Chang,J.T. (2020) Pathophysiology of inflammatory bowel diseases.

N. Engl. J. Med., 383, 2652–2664.

18. Zheng,R., Wan,C., Mei,S., Qin,Q., Wu,Q., Sun,H., Chen,C.H.,

Brown,M., Zhang,X., Meyer,C.A. et al. (2019) Cistrome data

browser: expanded datasets and new tools for gene regulatory

analysis. Nucleic Acids Res., 47, D729–D735.

19. Hammal,F., de Langen,P., Bergon,A., Lopez,F. and Ballester,B.

(2021) ReMap 2022: a database of human, mouse, drosophila and

arabidopsis regulatory regions from an integrative analysis of

DNA-binding sequencing experiments. Nucleic Acids Res., 50,

D316–D325.

20. Kolmykov,S., Yevshin,I., Kulyashov,M., Sharipov,R.,

Kondrakhin,Y., Makeev,V.J., Kulakovskiy,I.V., Kel,A. and

Kolpakov,F. (2021) GTRD: an integrated view of transcription

regulation. Nucleic Acids Res., 49, D104–D111.

21. Li,R., Liang,F., Li,M., Zou,D., Sun,S., Zhao,Y., Zhao,W., Bao,Y.,

Xiao,J. and Zhang,Z. (2018) MethBank 3.0: a database of DNA

methylomes across a variety of species. Nucleic Acids Res., 46,

D288–D295.

Downloaded from https://academic.oup.com/nar/article/50/W1/W175/6553688 by KYOTO UNIVERSITY Medical Library user on 06 October 2022

tain genes (24,25), and TF enrichment at genomic ROIs and

query genes (26–30) (see http://chip-atlas.org/publications

for the full list of publications citing ChIP-Atlas). Furthermore, because all alignment (bigWig) and peak-call

(bigBed) data can be freely downloaded, ChIP-Atlas is now

interconnecting with many other databases or web services

such as UCSC Browser, DeepBlue (an epigenomic data

server providing a central data access hub for large collections of epigenomic data), RegulatorTrail (a web service

predicting target genes of TFs), jPOSTrepo (a data repository of sharing raw/processed mass spectrometry data),

and the Signaling Pathways Project (a multi-omics knowledgemine based upon public transcriptomic and cistromic datasets) (31–35). Along with the inclusion of ATACseq and WGBS data, and the ongoing monthly updates

with semiautomatic pipelines and systematic curation, the

source data in ChIP-Atlas are continuously expanding. We

are planning to include more experiment types such as

CUT&Tag (36) and ChIL-seq (37) and more organisms including plants such as Arabidopsis thaliana. Integration of

preprocessed 3D genome conformation data such as Hi-C

datasets (38) into the Peak Browser and Enrichment Analysis tool is also on the agenda.

W182 Nucleic Acids Research, 2022, Vol. 50, Web Server issue

31. Lizio,M., Abugessaisa,I., Noguchi,S., Kondo,A., Hasegawa,A.,

Hon,C.C., De Hoon,M., Severin,J., Oki,S., Hayashizaki,Y. et al.

(2019) Update of the FANTOM web resource: expansion to provide

additional transcriptome atlases. Nucleic Acids Res., 47, D752–D758.

32. Albrecht,F., List,M., Bock,C. and Lengauer,T. (2016) DeepBlue

epigenomic data server: programmatic data retrieval and analysis of

epigenome region sets. Nucleic Acids Res., 44, W581–W586.

33. Kehl,T., Schneider,L., Schmidt,F., Stockel,D.,

Gerstner,N.,

Backes,C., Meese,E., Keller,A., Schulz,M.H. and Lenhof,H.P. (2017)

RegulatorTrail: a web service for the identification of key

transcriptional regulators. Nucleic Acids Res., 45, W146–W153.

34. Okuda,S., Watanabe,Y., Moriya,Y., Kawano,S., Yamamoto,T.,

Matsumoto,M., Takami,T., Kobayashi,D., Araki,N., Yoshizawa,A.C.

et al. (2017) jPOSTrepo: an international standard data repository for

proteomes. Nucleic Acids Res., 45, D1107–D1111.

35. Ochsner,S.A., Abraham,D., Martin,K., Ding,W., McOwiti,A.,

Kankanamge,W., Wang,Z., Andreano,K., Hamilton,R.A., Chen,Y.

et al. (2019) The signaling pathways project, an integrated ’omics

knowledgebase for mammalian cellular signaling pathways. Scientific

Data, 6, 252.

36. Kaya-Okur,H.S., Wu,S.J., Codomo,C.A., Pledger,E.S., Bryson,T.D.,

Henikoff,J.G., Ahmad,K. and Henikoff,S. (2019) CUT&Tag for

efficient epigenomic profiling of small samples and single cells. Nat.

Commun., 10, 1930.

37. Harada,A., Maehara,K., Handa,T., Arimura,Y., Nogami,J.,

Hayashi-Takanaka,Y., Shirahige,K., Kurumizaka,H., Kimura,H. and

Ohkawa,Y. (2018) A chromatin integration labelling method enables

epigenomic profiling with lower input. Nat. Cell Biol., 21, 287–296.

38. Lieberman-Aiden,E., Van Berkum,N.L., Williams,L., Imakaev,M.,

Ragoczy,T., Telling,A., Amit,I., Lajoie,B.R., Sabo,P.J.,

Dorschner,M.O. et al. (2009) Comprehensive mapping of long-range

interactions reveals folding principles of the human genome. Science,

326, 289–293.

Downloaded from https://academic.oup.com/nar/article/50/W1/W175/6553688 by KYOTO UNIVERSITY Medical Library user on 06 October 2022

22. Rhee,H.S. and Pugh,B.F. (2011) Comprehensive genome-wide

protein-DNA interactions detected at single nucleotide resolution.

Cell, 147, 1408–1419.

23. Chereji,R.V., Bryson,T.D. and Henikoff,S. (2019) Quantitative

MNase-seq accurately maps nucleosome occupancy levels. Genome

Biol., 20, 198.

24. Wang,R., Yamada,T., Kita,K., Taniguchi,H., Arai,S., Fukuda,K.,

Terashima,M., Ishimura,A., Nishiyama,A., Tanimoto,A. et al. (2020)

Transient IGF-1R inhibition combined with osimertinib eradicates

AXL-low expressing EGFR mutated lung cancer. Nat. Commun., 11,

4607.

25. Groff,A.F., Barutcu,A.R., Lewandowski,J.P. and Rinn,J.L. (2018)

Enhancers in the peril lincRNA locus regulate distant but not local

genes. Genome Biol., 19, 219.

26. H¨ansel-Hertsch,R., Simeone,A., Shea,A., Hui,W.W.I., Zyner,K.G.,

Marsico,G., Rueda,O.M., Bruna,A., Martin,A., Zhang,X. et al.

(2020) Landscape of G-quadruplex DNA structural regions in breast

cancer. Nat. Genet., 52, 878–883.

27. Roels,J., Kuchmiy,A., De Decker,M., Strubbe,S., Lavaert,M.,

Liang,K.L., Leclercq,G., Vandekerckhove,B., Van Nieuwerburgh,F.,

Van Vlierberghe,P. et al. (2020) Distinct and temporary-restricted

epigenetic mechanisms regulate human !" and # $ t cell development.

Nat. Immunol., 21, 1280–1292.

28. Zou,Z., Iwata,M., Yamanishi,Y. and Oki,S. (2022) Epigenetic

landscape of drug responses revealed through large-scale chip-seq

data analyses. BMC Bioinf., 23, 51.

29. Tanaka,H., Igata,T., Etoh,K., Koga,T., Takebayashi,S.i. and

Nakao,M. (2020) The NSD2/WHSC1/MMSET methyltransferase

prevents cellular senescence-associated epigenomic remodeling. Aging

Cell, 19, e13173.

30. Ferris,E., Abegglen,L.M., Schiffman,J.D. and Gregg,C. (2018)

Accelerated evolution in distinctive species reveals candidate elements

for clinically relevant traits, including mutation and cancer resistance.

Cell Rep., 22, 2742–2755.

主論文 2(Zou, Nucleic Acid Res.)の補足資料は下記 URL より入手可能である。 Nucleic Acid Research ホームページ:

https://doi.org/10.1093/nar/gkac199

京都⼤学ファイル共有システム:

https://fsv.iimc.kyoto-u.ac.jp/public/Ie0sgAxSKYlAYIgBRwuDxif4kWsKqw5f4j0ixBKxy-40

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る