リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of unique subregions of the caudal lateral striatum : in their conserved expression patterns of dopamine receptors D1 and D2 in rodents and primates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of unique subregions of the caudal lateral striatum : in their conserved expression patterns of dopamine receptors D1 and D2 in rodents and primates

Kumiko Ogata 同志社大学 DOI:info:doi/10.14988/00028189

2021.03.22

概要

It was generally accepted that dopamine receptors D1 (D1R)- and D2 (D2R)-expressing neurons are homogeneously and randomly distributed throughout the striatum. However, in reporter transgenic mice, the specific subregions of the caudal lateral striatum have been reported: the D1R-poor zone, in which D2R-expressing neurons are predominant, and the D2R-poor zone, in which D1R-expressing neurons are predominant. The present study demonstrated the presence of these distinct subregions not only in rodents but also in marmosets using endogenous dopamine receptors. We also showed that direct pathway medium spiny neurons in these distinct subregions preferentially project to parvalbumin-positive GABAergic neurons in the dorsal part of the substantia nigra pars lateralis.

この論文で使われている画像

参考文献

Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits; neural substrates of

parallel processing. Trends in neurosciences. 1990:266-271. doi:10.1016/0166-2236(90)90107-l

Bayer HM, Glimcher PW. Midbrain dopamine neurons encode a quantitative reward prediction error

signal. Neuron. 2005;47(1):129-141. doi:10.1016/j.neuron.2005.05.020

Bergman H, Feingold A, Nini A, et al. Physiological aspects of information processing in the basal

ganglia of normal and parkinsonian primates. Trends in neurosciences. 1997;21(1):1-7.

Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in Motivational Control: Rewarding,

Aversive, and Alerting. Neuron. 2010;68(5):815-834. doi:10.1016/j.neuron.2010.11.022

Clark JJ, Hollon NG, Phillips PEM. Pavlovian valuation systems in learning and decision making.

Current Opinion in Neurobiology. 2012;22(6):1054-1061. doi:10.1016/j.conb.2012.06.004

Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals for reward and

punishment in the ventral tegmental area. Nature. 2012;482(7383):85-88. doi:10.1038/nature10754

Cools AR, van Rossum JM. Excitation-mediating and inhibition-mediating dopamine-receptors: A

new concept towards a better understanding of electrophysiological, biochemical, pharmacological,

functional and clinical data. Psychopharmacologia. 1976;45(3):243-254. doi:10.1007/BF00421135

DeLong MR, Crutcher MD, Georgopoulos AP. Primate globus pallidus and subthalamic nucleus:

Functional

organization.

Journal

of

78

Neurophysiology.

1985;53(2):530-543.

doi:10.1152/jn.1985.53.2.530

Deniau JM, Menetrey A, Charpier S. The lamellar organization of the rat substantia nigra pars

reticulata: Segregated patterns of striatal afferents and relationship to the topography of corticostriatal

projections. Neuroscience. 1996;73(3):761-781. doi:10.1016/0306-4522(96)00088-7

Eshel N, Tian J, Bukwich M, Uchida N. Dopamine neurons share common response function for

reward prediction error. Nature Neuroscience. 2016;19(3):479-486. doi:10.1038/nn.4239

Chantal Francois, Gerard Percheron, Jerome Yelnik, Simone Heyner. A histological atlas of the

macaque (Macaca, mulatta) substantia nigra in ventricular coordinates. Brain Research Bulletin.

1985;14(4):349-367. doi:10.1016/0361-9230(85)90196-0

Fu YH, Yuan Y, Halliday G, Rusznák Z, Watson C, Paxinos G. A cytoarchitectonic and

chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental

area, and retrorubral field in the mouse. Brain Structure and Function. 2012;217(2):591-612.

doi:10.1007/s00429-011-0349-2

Gangarossa G, Espallergues J, Mailly P, et al. Spatial distribution of D1R- and D2R-expressing

medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum.

Frontiers in Neural Circuits. 2013;7(JUL):1-16. doi:10.3389/fncir.2013.00124

Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annual Review of

Neuroscience. 2011;34:441-466. doi:10.1146/annurev-neuro-061010-113641

Gerfen CR. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination.

Science. 1989;246(4928):385-388. doi:10.1126/science.2799392

García-González D, Khodosevich K, Watanabe Y, Rollenhagen A, Lübke JHR, Monyer H.

79

Serotonergic Projections Govern Postnatal Neuroblast Migration. Neuron. 2017;94(3):534-549.e9.

doi:10.1016/j.neuron.2017.04.013

Griggs WS, Kim HF, Ghazizadeh A, Costello MG, Wall KM, Hikosaka O. Flexible and stable value

coding areas in caudate head and tail receive anatomically distinct cortical and subcortical inputs.

Frontiers in Neuroanatomy. 2017;11(November):1-19. doi:10.3389/fnana.2017.00106

Hintiryan H, Foster NN, Bowman I, et al. The mouse cortico-striatal projectome. Nature

Neuroscience. 2016;19(8):1100-1114. doi:10.1038/nn.4332

Horie M, Tsukano H, Hishida R, Takebayashi H, Shibuki K. Dual compartments of the ventral

division of the medial geniculate body projecting to the core region of the auditory cortex in C57BL/6

mice. Neuroscience Research. 2013;76(4):207-212. doi:10.1016/j.neures.2013.05.004

Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T. A comprehensive excitatory

input map of the striatum reveals novel functional organization. eLife. 2016;5(November2016):1-32.

doi:10.7554/eLife.19103

Jaeger D, Gilman S, Wayne Aldridge J. Neuronal activity in the striatum and pallidum of primates

related to the execution of externally cued reaching movements. Brain Research. 1995;694(1-2):111127. doi:10.1016/0006-8993(95)00780-T

Jiang H, Kim HF. Anatomical inputs from the sensory and value structures to the tail of the rat

striatum. Frontiers in Neuroanatomy. 2018;12(May):1-17. doi:10.3389/fnana.2018.00030

Kim HF, Hikosaka O. Distinct Basal Ganglia Circuits Controlling Behaviors Guided by Flexible and

Stable Values. Neuron. 2013;79(5):1001-1010. doi:10.1016/j.neuron.2013.06.044

Kim HF, Hikosaka O. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach

80

rewards. Brain. 2015;138(7):1776-1800. doi:10.1093/brain/awv134

Kim HF, Ghazizadeh A, Hikosaka O. Separate groups of dopamine neurons innervate caudate head

and tail encoding flexible and stable value memories. Frontiers in Neuroanatomy. 2014;8(October):112. doi:10.3389/fnana.2014.00120

Kim HF, Ghazizadeh A, Hikosaka O. Dopamine neurons encoding long-term memory of object value

for habitual behavior. Cell. 2015; 163(5):1165-1175. doi.org/10.1016/j.cell.2015.10.063.

Kincaid AE, Penney JB, Young AB, Newman SW. Evidence for a projection from the globus pallidus

to the entopeduncular nucleus in the rat. Neuroscience Letters. 1991;128(1):121-125.

doi:10.1016/0304-3940(91)90774-N

Kita H, Kitai ST. Intracellular study of rat globus pallidus neurons: membrane properties and

responses to neostriatal, subthalamic and nigral stimulation. Brain Res. 1991;564:296–305. doi:

10.1016/0006-8993(91)91466-E

Kreitzer AC. Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience.

2009;32:127-147. doi:10.1146/annurev.neuro.051508.135422

Lança AJ, Boyd S, Kolb B, Kooy DVD. The development of a patchy organization of the rat striatum.

Developmental Brain Research. 1986;27(1):1-10. doi:10.1016/0165-3806(86)90226-9

LeDoux JE, Farb C, Ruggiero DA. Topographic organization of neurons in the acoustic thalamus that

project to the amygdala. Journal of Neuroscience. 1990;10(4):1043-1054. doi:10.1523/jneurosci.1004-01043.1990

Matsuda W, Furuta T, Nakamura KC, et al. Single nigrostriatal dopaminergic neurons form widely

spread and highly dense axonal arborizations in the neostriatum. Journal of Neuroscience.

81

2009;29(2):444-453. doi:10.1523/JNEUROSCI.4029-08.2009

de Mei C, Ramos M, Iitaka C, Borrelli E. Getting specialized: presynaptic and postsynaptic dopamine

D2 receptors. Current Opinion in Pharmacology. 2009;9(1):53-58. doi:10.1016/j.coph.2008.12.002

Menegas W, Bergan JF, Ogawa SK, et al. Dopamine neurons projecting to the posterior striatum form

an anatomically distinct subclass. eLife. 2015;4(AUGUST2015):1-30. doi:10.7554/eLife.10032

Menegas W, Babayan BM, Uchida N, Watabe-Uchida M. Opposite initialization to novel cues in

dopamine

signaling

in

ventral

and

posterior

striatum

in

mice.

eLife.

2017;6:1-26.

doi:10.7554/eLife.21886

Menegas W, Akiti K, Amo R, Uchida N, Watabe-Uchida M. Dopamine neurons projecting to the

posterior

striatum

reinforce

avoidance

of

threatening

stimuli.

Nature

Neuroscience.

2018;21(10):1421-1430. doi:10.1038/s41593-018-0222-1

Mikaelian D.O, Warfield D & Norris Olga. Genetic Progressive Hearing Loss in the C57/M6 Mouse:

Relation

of

Behaviorial

Responses

to

Cochlear

Anatomy.

Acta

Oto-Laryngologica.

1974;77:1(6):327-334. doi:10.3109/00016487409124632

Miyamoto Y, Katayama S, Shigematsu N, Nishi A, Fukuda T. Striosome-based map of the mouse

striatum that is conformable to both cortical afferent topography and uneven distributions of

dopamine D1 and D2 receptor-expressing cells. Brain Structure and Function. 2018;223(9):42754291. doi:10.1007/s00429-018-1749-3

Miyamoto Y, Nagayoshi I, Nishi A, Fukuda T. Three divisions of the mouse caudal striatum differ in

the proportions of dopamine D1 and D2 receptor-expressing cells, distribution of dopaminergic axons,

and composition of cholinergic and GABAergic interneurons. Brain Structure and Function.

82

2019;224(8):2703-2716. doi:10.1007/s00429-019-01928-3

Moriizumi T, Hattori T. Separate neuronal populations of the rat globus pallidus projecting to the

subthalamic nucleus, auditory cortex and pedunculopontine tegmental area. Neuroscience.

1992;46(3):701-710. doi:10.1016/0306-4522(92)90156-V

Mounir S, Parent A. The expression of neurokinin-1 receptor at striatal and pallidal levels in normal

human brain. Neuroscience Research. 2002;44(1):71-81. doi:10.1016/S0168-0102(02)00087-1

Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal

“hyperdirect”

pathway.

Neuroscience

Research.

2002;43(2):111-117.

doi:10.1016/S0168-

0102(02)00027-5

Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamocortical loop. Brain Res. Rev. 1995a;20:91–127. doi:10.1016/0165-0173(94)00007-C

Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus

and external pallidium in basal ganglia circuitry. Brain Research Reviews. 1995b;20(1):128-154.

doi:10.1016/0165-0173(94)00008-D

Poulin JF, Caronia G, Hofer C, et al. Mapping projections of molecularly defined dopamine neuron

subtypes using intersectional genetic approaches. Nature Neuroscience. 2018;21(9):1260-1271.

doi:10.1038/s41593-018-0203-4

Robledo P, Ferger J. Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata

and the pallidal complex: electrophysiological data. Brain Res. 1990;518:47–54. doi: 10.1016/00068993(90)90952-8

Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science.

83

1997;275(5306):1593-1599. doi:10.1126/science.275.5306.1593

Schultz W. Predictive reward signal of dopamine neurons. Journal of Neurophysiology.

1998;80(1):1-27. doi:10.1152/jn.1998.80.1.1

Schultz W. Multiple dopamine functions at different time courses. Annual Review of Neuroscience.

2007;30:259-288. doi:10.1146/annurev.neuro.28.061604.135722

Storace DA, Higgins NC, Read HL. Thalamic label patterns suggest primary and ventral auditory

fields are distinct core regions. Journal of Comparative Neurology. 2010;518(10):1630-1646.

doi:10.1002/cne.22345

Sunahara, R., Guan, HC., O'Dowd, B. et al. Cloning of the gene for a human dopamine D5 receptor

with higher affinity for dopamine than D1. Nature. 1991;350:614–619. doi:10.1038/350614a0

Suzuki M, Sakamoto T, Kashio A, Yamasoba T. Age-related morphological changes in the basement

membrane in the stria vascularis of C57BL/6 mice. Eur Arch Otorhinolaryngol. 2016;273(1):57-62.

doi: 10.1007/s00405-014-3478-4.

Tsukano H, Horie M, Hishida R, Takahashi K, Takebayashi H, Shibuki K. Quantitative map of

multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain. Scientific

Reports. 2016;6(February):1-12. doi:10.1038/srep22315

Tsukano H, Horie M, Ohga S, et al. Reconsidering tonotopic maps in the auditory cortex and

lemniscal auditory thalamus in mice. Frontiers in Neural Circuits. 2017;11(February):1-8.

doi:10.3389/fncir.2017.00014

Tsukano H, Horie M, Takahashi K, Hishida R, Takebayashi H, Shibuki K. Independent tonotopy and

thalamocortical projection patterns in two adjacent parts of the classical primary auditory cortex in

84

mice. Neuroscience Letters. 2017;637:26-30. doi:10.1016/j.neulet.2016.11.062

Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neuroscience and

Biobehavioral Reviews. 2000;24(1):125-132. doi:10.1016/S0149-7634(99)00063-9

Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus. III. Changes in motor

behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the

MPTP

model

of

parkinsonism.

Journal

of

Neurophysiology.

1994;72(2):521-530.

doi:10.1152/jn.1994.72.2.521

Xiong Q, Znamenskiy P, Zador AM. Selective corticostriatal plasticity during acquisition of an

auditory discrimination task. Nature. 2015;521(7552):348-351. doi:10.1038/nature14225

85

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る