リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Reconsidering Ventriculoperitoneal Shunt Surgery and Postoperative Shunt Valve Pressure Adjustment: Our Approaches Learned From Past Challenges and Failures.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Reconsidering Ventriculoperitoneal Shunt Surgery and Postoperative Shunt Valve Pressure Adjustment: Our Approaches Learned From Past Challenges and Failures.

YAMADA Shigeki 0000-0001-7158-5569 ISHIKAWA Masatsune 0000-0003-3515-4969 NAKAJIMA Madoka NOZAKI Kazuhiko 90252452 0000-0003-1623-068X 滋賀医科大学

2022.01.06

概要

Treatment for idiopathic normal pressure hydrocephalus (iNPH) continues to develop. Although ventriculoperitoneal shunt surgery has a long history and is one of the most established neurosurgeries, in the 1970s, the improvement rate of iNPH triad symptoms was poor and the risks related to shunt implantation were high. This led experts to question the surgical indication for iNPH and, over the next 20 years, cerebrospinal fluid (CSF) shunt surgery for iNPH fell out of favor and was rarely performed. However, the development of programmable-pressure shunt valve devices has reduced the major complications associated with the CSF drainage volume and appears to have increased shunt effectiveness. In addition, the development of support devices for the placement of ventricular catheters including preoperative virtual simulation and navigation systems has increased the certainty of ventriculoperitoneal shunt surgery. Secure shunt implantation is the most important prognostic indicator, but ensuring optimal initial valve pressure is also important. Since over-drainage is most likely to occur in the month after shunting, it is generally believed that a high initial setting of shunt valve pressure is the safest option. However, this does not always result in sufficient improvement of the symptoms in the early period after shunting. In fact, evidence suggests that setting the optimal valve pressure early after shunting may cause symptoms to improve earlier. This leads to improved quality of life and better long-term independent living expectations. However, in iNPH patients, the remaining symptoms may worsen again after several years, even when there is initial improvement due to setting the optimal valve pressure early after shunting. Because of the possibility of insufficient CSF drainage, the valve pressure should be reduced by one step (2–4 cmH2O) after 6 months to a year after shunting to maximize symptom improvement. After the valve pressure is reduced, a head CT scan is advised a month later.

この論文で使われている画像

参考文献

of outcome assessment in shunted patients. Neurosurgery. (2005) 57:S40–

52. doi: 10.1227/01.NEU.0000168187.01077.2F

5. Kahlon B, Sjunnesson J, Rehncrona S. Long-term outcome

in patients with suspected normal pressure hydrocephalus.

Neurosurgery. (2007) 60:327–32. doi: 10.1227/01.NEU.0000249273.415

69.6E

6. Wikkelso C, Hellstrom P, Klinge PM, Tans JT, European I NPHMSG. The

European iNPH Multicentre Study on the predictive values of resistance

to CSF outflow and the CSF Tap Test in patients with idiopathic normal

pressure hydrocephalus. J Neurol Neurosurg Psychiatry. (2013) 84:562–

8. doi: 10.1136/jnnp-2012-303314

1. Ames RH. Ventriculo-peritoneal shunts in the management of hydrocephalus.

J Neurosurg. (1967) 27:525–9. doi: 10.3171/jns.1967.27.6.0525

2. Nulsen FE, Spitz EB. Treatment of hydrocephalus by direct shunt from

ventricle to jugular vain. Surg Forum. (1952) 2:399–403.

3. Hakim S. Hydraulic and mechanical mis-matching of valve shunts used in the

treatment of hydrocephalus: the need for a servo-valve shunt. Dev Med Child

Neurol. (1973) 15:646–53. doi: 10.1111/j.1469-8749.1973.tb05175.x

4. Klinge P, Marmarou A, Bergsneider M, Relkin N, Black PM. Outcome

of shunting in idiopathic normal-pressure hydrocephalus and the value

Frontiers in Neurology | www.frontiersin.org

12

January 2022 | Volume 12 | Article 798488

Yamada et al.

V-P Shunt and Valve Pressure

7. Williams MA, Relkin NR. Diagnosis and management of

idiopathic normal-pressure hydrocephalus. Neurol Clin Pract. (2013)

3:375–85. doi: 10.1212/CPJ.0b013e3182a78f6b

8. Ziebell M, Wetterslev J, Tisell M, Gluud C, Juhler M. Flow-regulated versus

differential pressure-regulated shunt valves for adult patients with normal

pressure hydrocephalus. Cochrane Database Syst Rev. (2013) 5:CD009706.

doi: 10.1002/14651858.CD009706.pub2

9. Saehle T, Farahmand D, Eide PK, Tisell M, Wikkelso C. A randomized

controlled dual-center trial on shunt complications in idiopathic normalpressure hydrocephalus treated with gradually reduced or “fixed” pressure

valve settings. J Neurosurg. (2014) 121:1257–63. doi: 10.3171/2014.7.JNS14283

10. Kazui H, Miyajima M, Mori E, Ishikawa M, Investigators S.

Lumboperitoneal shunt surgery for idiopathic normal pressure hydrocephalus

(SINPHONI-2): an open-label randomised trial. Lancet Neurol. (2015)

14:585–94. doi: 10.1016/S1474-4422(15)00046-0

11. Miyajima M, Kazui H, Mori E, Ishikawa M, Sinphoni-Investigators

OBOT. One-year outcome in patients with idiopathic normal-pressure

hydrocephalus: comparison of lumboperitoneal shunt to ventriculoperitoneal

shunt. J Neurosurg. (2016) 125:1483–92. doi: 10.3171/2015.10.JNS151894

12. Miyake H. Shunt devices for the treatment of adult hydrocephalus: recent

progress and characteristics. Neurol Med Chir (Tokyo). (2016) 56:274–

83. doi: 10.2176/nmc.ra.2015-0282

13. Williams MA, Malm J. Diagnosis and treatment of idiopathic normal

pressure hydrocephalus. Continuum (Minneap Minn). (2016) 22:579–

99. doi: 10.1212/CON.0000000000000305

14. Yamada S, Ishikawa M, Miyajima M, Nakajima M, Atsuchi M, Kimura

T, et al. Timed up and go test at tap test and shunt surgery in

idiopathic normal pressure hydrocephalus. Neurol Clin Pract. (2017) 7:98–

108. doi: 10.1212/CPJ.0000000000000334

15. Yamada S, Kimura T, Jingami N, Atsuchi M, Hirai O, Tokuda T, et al. Disability

risk or unimproved symptoms following shunt surgery in patients with

idiopathic normal-pressure hydrocephalus: post hoc analysis of SINPHONI-2.

J Neurosurg. (2017) 126:2002–9. doi: 10.3171/2016.5.JNS16377

16. Marmarou A, Bergsneider M, Relkin N, Klinge P, Black PM. Development

of guidelines for idiopathic normal-pressure hydrocephalus: introduction.

Neurosurgery. (2005) 57:S1–3. doi: 10.1227/01.NEU.0000168188.25559.0E

17. Marmarou A, Black P, Bergsneider M, Klinge P, Relkin N, International

NPHCG. Guidelines for management of idiopathic normal pressure

hydrocephalus: progress to date. Acta Neurochir Suppl. (2005) 95:237–

40. doi: 10.1007/3-211-32318-X_48

18. Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, et al.

Guidelines for management of idiopathic normal pressure hydrocephalus.

Neurol Med Chir (Tokyo). (2008) 48(Suppl.):S1–23. doi: 10.2176/nmc.48.S1

19. Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M,

et al. Guidelines for management of idiopathic normal pressure

hydrocephalus: second edition. Neurol Med Chir (Tokyo). (2012)

52:775–809. doi: 10.2176/nmc.52.775

20. Halperin JJ, Kurlan R, Schwalb JM, Cusimano MD, Gronseth G, Gloss

D. Practice guideline: idiopathic normal pressure hydrocephalus:

response to shunting and predictors of response: report of the guideline

development, dissemination, and implementation subcommittee

of the American Academy of Neurology. Neurology. (2015)

85:2063–71. doi: 10.1212/WNL.0000000000002193

21. Nakajima M, Yamada S, Miyajima M, Ishii K, Kuriyama N, Kazui

H, et al. Guidelines for Management of Idiopathic Normal Pressure

Hydrocephalus (Third Edition): endorsed by the Japanese Society of

Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo). (2021) 61:63–

97. doi: 10.2176/nmc.st.2020-0292

22. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G.

Comparative analysis of the gait disorder of normal pressure hydrocephalus

and Parkinson’s disease. J Neurol Neurosurg Psychiatry. (2001) 70:289–

97. doi: 10.1136/jnnp.70.3.289

23. Ishikawa M, Yamada S, Yamamoto K. Agreement study on gait

assessment using a video-assisted rating method in patients with

idiopathic normal-pressure hydrocephalus. PLoS ONE. (2019)

14:e0224202. doi: 10.1371/journal.pone.0224202

24. Yamada S, Aoyagi Y, Ishikawa M, Yamaguchi M, Yamamoto K, Nozaki

K. Gait assessment using three-dimensional acceleration of the trunk in

Frontiers in Neurology | www.frontiersin.org

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

13

idiopathic normal pressure hydrocephalus. Front Aging Neurosci. (2021)

13:653964. doi: 10.3389/fnagi.2021.653964

Black PM. Idiopathic normal-pressure hydrocephalus. Results of shunting

in 62 patients. J Neurosurg. (1980) 52:371–7. doi: 10.3171/jns.1980.52.

3.0371

Krauss JK, Droste DW, Vach W, Regel JP, Orszagh M, Borremans JJ, et al.

Cerebrospinal fluid shunting in idiopathic normal-pressure hydrocephalus

of the elderly: effect of periventricular and deep white matter lesions.

Neurosurgery. (1996) 39:292–9. doi: 10.1097/00006123-199608000-00011

Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW,

Wurzer JA, et al. Dutch normal pressure hydrocephalus study: baseline

characteristics with emphasis on clinical findings. Eur J Neurol. (1997)

4:39–47. doi: 10.1111/j.1468-1331.1997.tb00297.x

Eide PK. Intracranial pressure parameters in idiopathic normal pressure

hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta

Neurochir (Wien). (2006) 148:21–9. doi: 10.1007/s00701-005-0654-8

Hellstrom P, Klinge P, Tans J, Wikkelso C. A new scale for assessment

of severity and outcome in iNPH. Acta Neurol Scand. (2012) 126:229–

37. doi: 10.1111/j.1600-0404.2012.01677.x

Ishikawa M, Yamada S, Yamamoto K, Aoyagi Y. Gait analysis in a component

timed-up-and-go test using a smartphone application. J Neurol Sci. (2019)

398:45–9. doi: 10.1016/j.jns.2019.01.023

Ishikawa M, Yamada S, Yamamoto K. Early and delayed assessments of

quantitative gait measures to improve the tap test as a predictor of shunt

effectiveness in idiopathic normal pressure hydrocephalus. Fluids Barriers

CNS. (2016) 13:20. doi: 10.1186/s12987-016-0044-z

Nakajima M, Yamada S, Miyajima M, Kawamura K, Akiba C, Kazui H, et

al. Tap test can predict cognitive improvement in patients with iNPH-results

from the multicenter prospective studies SINPHONI-1 and−2. Front Neurol.

(2021) 12:769216. doi: 10.3389/fneur.2021.769216

Wikkelso C, Andersson H, Blomstrand C, Lindqvist G, Svendsen

P. Normal pressure hydrocephalus. Predictive value of the

cerebrospinal fluid tap-test. Acta Neurol Scand. (1986) 73:566–

73. doi: 10.1111/j.1600-0404.1986.tb04601.x

Ishikawa M, Oowaki H, Matsumoto A, Suzuki T, Furuse M, Nishida N. (2010).

Clinical significance of cerebrospinal fluid tap test and magnetic resonance

imaging/computed tomography findings of tight high convexity in patients

with possible idiopathic normal pressure hydrocephalus. Neurol Med Chir

(Tokyo). 50:119–23. doi: 10.2176/nmc.50.119

Ishikawa M, Hashimoto M, Mori E, Kuwana N, Kazui H. The value

of the cerebrospinal fluid tap test for predicting shunt effectiveness in

idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. (2012)

9:1. doi: 10.1186/2045-8118-9-1

Mihalj M, Dolic K, Kolic K, Ledenko V. CSF tap test–obsolete or appropriate

test for predicting shunt responsiveness? a systemic review. J Neurol Sci.

(2016) 362:78–84. doi: 10.1016/j.jns.2016.01.028

Yamada S, Ishikawa M, Miyajima M, Atsuchi M, Kimura T, Kazui H, et al.

Disease duration: the key to accurate CSF tap test in iNPH. Acta Neurol Scand.

(2017) 135:189–96. doi: 10.1111/ane.12580

Thakur SK, Serulle Y, Miskin NP, Rusinek H, Golomb J, George AE. Lumbar

puncture test in normal pressure hydrocephalus: does the volume of csf

removed affect the response to tap? AJNR Am J Neuroradiol. (2017) 38:1456–

60. doi: 10.3174/ajnr.A5187

Schniepp R, Trabold R, Romagna A, Akrami F, Hesselbarth K, Wuehr

M, et al. Walking assessment after lumbar puncture in normal-pressure

hydrocephalus: a delayed improvement over 3 days. J Neurosurg. (2017)

126:148–57. doi: 10.3171/2015.12.JNS151663

Yamada S, Aoyagi Y, Yamamoto K, Ishikawa M. Quantitative evaluation of

gait disturbance on an instrumented timed up-and-go test. Aging Dis. (2019)

10:23–36. doi: 10.14336/AD.2018.0426

Yamada S, Ishikawa M, Nozaki K. Exploring mechanisms of ventricular

enlargement in idiopathic normal pressure hydrocephalus: a role of

cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS. (2021)

18:20. doi: 10.1186/s12987-021-00243-6

Yamada S, Ishikawa M, Yamamoto K. Optimal diagnostic indices for

idiopathic normal pressure hydrocephalus based on the 3D quantitative

volumetric analysis for the cerebral ventricle and subarachnoid space. AJNR

Am J Neuroradiol. (2015) 36:2262–9. doi: 10.3174/ajnr.A4440

January 2022 | Volume 12 | Article 798488

Yamada et al.

V-P Shunt and Valve Pressure

60. Wan KR, Toy JA, Wolfe R, Danks A. Factors affecting the

accuracy of ventricular catheter placement. J Clin Neurosci. (2011)

18:485–8. doi: 10.1016/j.jocn.2010.06.018

61. Jeremiah KJ, Cherry CL, Wan KR, Toy JA, Wolfe R, Danks RA. Choice

of valve type and poor ventricular catheter placement: Modifiable factors

associated with ventriculoperitoneal shunt failure. J Clin Neurosci. (2016)

27:95–8. doi: 10.1016/j.jocn.2015.07.026

62. Wilson, T. J., Mccoy, K. E., Al-Holou, W. N., Molina, S. L., Smyth,

M. D., and Sullivan, S. E. (2016). Comparison of the accuracy and

proximal shunt failure rate of freehand placement versus intraoperative

guidance in parietooccipital ventricular catheter placement. Neurosurg Focus

41:E10. doi: 10.3171/2016.5.FOCUS16159

63. Huyette DR, Turnbow BJ, Kaufman C, Vaslow DF, Whiting BB, Oh MY.

Accuracy of the freehand pass technique for ventriculostomy catheter

placement: retrospective assessment using computed tomography scans. J

Neurosurg. (2008) 108:88–91. doi: 10.3171/JNS/2008/108/01/0088

64. Lind CR, Tsai AM, Lind CJ, Law AJ. Ventricular catheter placement accuracy

in non-stereotactic shunt surgery for hydrocephalus. J Clin Neurosci. (2009)

16:918–20. doi: 10.1016/j.jocn.2008.09.015

65. Wilson TJ, Stetler WR, Al-Holou WN, Sullivan SE. Comparison of the

accuracy of ventricular catheter placement using freehand placement,

ultrasonic guidance, and stereotactic neuronavigation. J Neurosurg. (2013)

119:66–70. doi: 10.3171/2012.11.JNS111384

66. Yamada S, Ishikawa M, Yamamoto K. Utility of preoperative simulation for

ventricular catheter placement via a parieto-occipital approach in normalpressure hydrocephalus. Oper Neurosurg (Hagerstown). (2019) 16:647–

57. doi: 10.1093/ons/opy193

67. Gautschi OP, Smoll NR, Kotowski M, Schatlo B, Tosic M, Stimec B, et al.

Non-assisted versus neuro-navigated and XperCT-guided external ventricular

catheter placement: a comparative cadaver study. Acta Neurochir (Wien).

(2014) 156:777–85. doi: 10.1007/s00701-014-2026-8

68. Nesvick CL, Khan NR, Mehta GU, Klimo P. Jr. Image guidance

in ventricular cerebrospinal fluid shunt catheter placement:

a systematic review and meta-analysis. Neurosurgery. (2015)

77:321–31. doi: 10.1227/NEU.0000000000000849

69. Pollack IF, Albright AL, Adelson PD. A randomized, controlled study

of a programmable shunt valve versus a conventional valve for patients

with hydrocephalus. Hakim-Medos Investigator Group. Neurosurgery. (1999)

45:1399–408. doi: 10.1097/00006123-199912000-00026

70. Ringel F, Schramm J, Meyer B. Comparison of programmable shunt

valves vs standard valves for communicating hydrocephalus of adults:

a retrospective analysis of 407 patients. Surg Neurol. (2005) 63:36–

41. doi: 10.1016/j.surneu.2004.03.015

71. Kameda M, Yamada S, Atsuchi M, Kimura T, Kazui H, Miyajima M, et al.

Cost-effectiveness analysis of shunt surgery for idiopathic normal pressure

hydrocephalus based on the SINPHONI and SINPHONI-2 trials. Acta

Neurochir (Wien). (2017) 159:995–1003. doi: 10.1007/s00701-017-3115-2

72. Czosnyka

Z,

Pickard

JD,

Czosnyka

M.

Hydrodynamic

properties of the Certas hydrocephalus shunt. J Neurosurg

Pediatr.

(2013)

11:198–204.

doi:

10.3171/2012.10.PEDS

12239

73. Czosnyka Z, Czosnyka M, Pickard JD. Hydrodynamic performance of a new

siphon preventing device: the SiphonGuard. J Neurol Neurosurg Psychiatry.

(1999) 66:408–9. doi: 10.1136/jnnp.66.3.408a

74. Miyake H, Kajimoto Y, Tsuji M, Ukita T, Tucker A, Ohmura T. Development

of a quick reference table for setting programmable pressure valves in patients

with idiopathic normal pressure hydrocephalus. Neurol Med Chir. (2008)

48:427–32. doi: 10.2176/nmc.48.427

75. Miyake H, Kajimoto Y, Murai H, Nomura S, Ono S, Okamoto Y, et

al. Assessment of a quick reference table algorithm for determining

initial postoperative pressure settings of programmable pressure valves

in patients with idiopathic normal pressure hydrocephalus: SINPHONI

subanalysis. Neurosurgery. (2012) 71:722–8. doi: 10.1227/NEU.0b013e3182

60fef7

76. Farahmand D, Sæhle T, Eide PK, Tisell M, Hellström P, Wikkelsö C. A

double-blind randomized trial on the clinical effect of different shunt valve

settings in idiopathic normal pressure hydrocephalus. J Neurosurg. (2016)

124:359–67. doi: 10.3171/2015.1.JNS141301

43. Toma AK, Holl E, Kitchen ND, Watkins LD. Evans’ index revisited: the need

for an alternative in normal pressure hydrocephalus. Neurosurgery. (2011)

68:939–44. doi: 10.1227/NEU.0b013e318208f5e0

44. Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative

prognostic value of MRI findings in 108 patients with idiopathic

normal pressure hydrocephalus. AJNR Am J Neuroradiol. (2014)

35:2311–8. doi: 10.3174/ajnr.A4046

45. Yamada S, Ishikawa M, Iwamuro Y, Yamamoto K. Choroidal fissure acts as an

overflow device in cerebrospinal fluid drainage: morphological comparison

between idiopathic and secondary normal-pressure hydrocephalus. Sci Rep.

(2016) 6:39070. doi: 10.1038/srep39070

46. Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelso C. Estimated

ventricle size using Evans index: reference values from a population-based

sample. Eur J Neurol. (2017) 24:468–74. doi: 10.1111/ene.13226

47. Yamada S, Ishikawa M, Yamamoto K. Fluid distribution pattern in

adult-onset congenital, idiopathic, and secondary normal-pressure

hydrocephalus: implications for clinical care. Front Neurol. (2017)

8:583. doi: 10.3389/fneur.2017.00583

48. Shereen XYS, Aravin Kumar A, Audrey JL, Tan Yu Tung LO, Christine

L, Sumeet K, et al. The impact of multimorbidity burden, frailty risk

scoring, and 3-directional morphological indices vs. testing for CSF

responsiveness in normal pressure hydrocephalus. Front Neurosci. (2021)

15:751145. doi: 10.3389/fnins.2021.751145

49. Hashimoto M, Ishikawa M, Mori E, Kuwana N. Diagnosis of

idiopathic normal pressure hydrocephalus is supported by MRI-based

scheme: a prospective cohort study. Cerebrospinal Fluid Res. (2010)

7:18. doi: 10.1186/1743-8454-7-18

50. Ishikawa M, Oowaki H, Takezawa M, Takenaka T, Yamada S,

Yamamoto K, et al. Disproportionately enlarged subarachnoid

space hydrocephalus in idiopathic normal-pressure hydrocephalus

and its implication in pathogenesis. Acta Neurochir Suppl. (2016)

122:287–90. doi: 10.1007/978-3-319-22533-3_57

51. Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada

K, et al. Clinical impact of the callosal angle in the diagnosis of

idiopathic normal pressure hydrocephalus. Eur Radiol. (2008) 18:2678–

83. doi: 10.1007/s00330-008-1044-4

52. Yamada S, Ishikawa M, Yamamoto K. Comparison of CSF distribution

between idiopathic normal pressure hydrocephalus and Alzheimer’s

Disease. AJNR Am J Neuroradiol. (2016) 37:1249–55. doi: 10.3174/ajnr.

A4695

53. Virhammar J, Laurell K, Cesarini KG, Larsson EM. Increase in callosal

angle and decrease in ventricular volume after shunt surgery in patients

with idiopathic normal pressure hydrocephalus. J Neurosurg. (2018) 130:130–

5. doi: 10.3171/2017.8.JNS17547

54. Yamada S, Ishikawa M, Yamaguchi M, Yamamoto K. Longitudinal

morphological changes during recovery from brain deformation due

to idiopathic normal pressure hydrocephalus after ventriculoperitoneal

shunt surgery. Sci Rep. (2019) 9:17318. doi: 10.1038/s41598-01953888-7

55. Kuriyama N, Miyajima M, Nakajima M, Kurosawa M, Fukushima W,

Watanabe Y, et al. Nationwide hospital-based survey of idiopathic normal

pressure hydrocephalus in Japan: Epidemiological and clinical characteristics.

Brain Behav. (2017) 7:e00635. doi: 10.1002/brb3.635

56. Nakajima M, Miyajima M, Ogino I, Akiba C, Kawamura K, Kurosawa M, et

al. Shunt intervention for possible idiopathic normal pressure hydrocephalus

improves patient outcomes: a nationwide hospital-based survey in Japan.

Front Neurol. (2018) 9:421. doi: 10.3389/fneur.2018.00421

57. Ishikawa M, Yamada S, Miyajima M, Kazui H, Mori E. Improvement in the

long-term care burden after surgical treatment of patients with idiopathic

normal pressure hydrocephalus: a supplementary study. Sci Rep. (2021)

11:11732. doi: 10.1038/s41598-021-90911-2

58. Janson CG, Romanova LG, Rudser KD, Haines SJ. Improvement in

clinical outcomes following optimal targeting of brain ventricular

catheters

with

intraoperative

imaging.

Neurosurg.

(2014)

120:684–96. doi: 10.3171/2013.8.JNS13250

59. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in

idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR

Am J Neuroradiol. (1998) 19:1277–84.

Frontiers in Neurology | www.frontiersin.org

14

January 2022 | Volume 12 | Article 798488

Yamada et al.

V-P Shunt and Valve Pressure

77. Yamada S, Ishikawa M, Yamamoto K, Ino T, Kimura T, Kobayashi S,

et al. Aneurysm location and clipping versus coiling for development of

secondary normal-pressure hydrocephalus after aneurysmal subarachnoid

hemorrhage: Japanese Stroke DataBank. J Neurosurg. (2015) 123:1555–

61. doi: 10.3171/2015.1.JNS142761

78. Hebb AO, Cusimano MD Idiopathic normal pressure hydrocephalus: a

systematic review of diagnosis and outcome. Neurosurgery. (2001) 49:1166–

84. doi: 10.1227/00006123-200111000-00028

79. Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins

LD. Systematic review of the outcome of shunt surgery in idiopathic

normal-pressure hydrocephalus. Acta Neurochir (Wien). (2013)

155:1977–80. doi: 10.1007/s00701-013-1835-5

80. Merkler AE, Ch’ang J, Parker WE, Murthy SB, Kamel H. The rate of

complications after ventriculoperitoneal shunt surgery. World Neurosurg.

(2017) 98:654–8. doi: 10.1016/j.wneu.2016.10.136

81. Andren K, Wikkelso C, Hellstrom P, Tullberg M, Jaraj D. Early

shunt surgery improves survival in idiopathic normal pressure

hydrocephalus. Eur J Neurol. (2021) 28:1153–9. doi: 10.1111/ene.1

4671

82. Larsson J, Israelsson H, Eklund A, Lundin-Olsson L, Malm J. Falls and fear

of falling in shunted idiopathic normal pressure hydrocephalus-the idiopathic

normal pressure hydrocephalus comorbidity and risk factors associated with

hydrocephalus study. Neurosurgery. (2021) 89:122–8. doi: 10.1093/neuros/nya

b094

Corporation for 4 years, beginning 2019; from the G-7 Scholarship Foundation

in 2020; and from Taiju Life Social Welfare Foundation in 2020. He received a

speaker’s honoraria from Integra Japan, Fujifilm Medical Systems, Medtronic, Inc.,

and Nihon Medi-Physics Co., Ltd. MN received a speaker’s honoraria from Integra

Japan, Janssen Pharmaceutical K.K., and Medtronic, Inc. These were unrelated to

the submitted work. KN has received grants from the Japan Agency for Medical

Research and Development (AMED), a KAKENHI grant from the Japan Society

for the Promotion of Science, and speaker’s honoraria from Pfizer, Japan Inc., and

Daiichi Sankyo Co., Ltd. These were unrelated to the submitted work.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Yamada, Ishikawa, Nakajima and Nozaki. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Conflict of Interest: SY has received research grants from the Japan Society for

the Promotion of Science, KAKENHI for 3 years, beginning 2021; from Fujifilm

Frontiers in Neurology | www.frontiersin.org

15

January 2022 | Volume 12 | Article 798488

...

参考文献をもっと見る