リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Exploring factors governing the gut microbiome of Japanese macaques」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Exploring factors governing the gut microbiome of Japanese macaques

Lee, Wan Yi 京都大学 DOI:10.14989/doctor.k23749

2022.03.23

概要

The mammalian gastrointestinal tract harbors a complex ecosystem that made up of a variety of microorganisms, collectively known as the gut microbiome. Specifically, mammals rely on the gut microbiome to process the indigestible plant materials. Through fermentation, the gut microbes transform fiber and the other indigestible materials into short-chain fatty acids and other nutrients, which are then absorbed by the host animals. For nonhuman primates and other animals that depend on plant material as the main component of their diet, the gut microbiome and its digestive function play a vital role in their feeding ecology. Despite the advancing knowledge in contributions of gut microbiome, mechanism shaping primate and mammalian gut microbiome remains obscure. Knowledge on primate gut microbiome can offer critical perspective in understanding primate feeding ecology. Living at the northern limits of the primate global range, Japanese macaques (Macaca fuscata) inhabit the marginal habitat for the primates. Their diet includes a considerable proportion of fibrous foods, which would be indigestible without gut microbiome. Thriving in various habitats, Japanese macaques are astonishingly flexible in their feeding behavior, making them the most suitable study subject for host-gut microbiome relationship in primates. Studies on Japanese macaques so far have revealed how macaques flexibly adapt to dietary variation across habitats and seasons via foraging behaviors. The gut microbiome of Japanese macaques has yet to be investigated in depth. Understanding of macaques’ gut microbiome will not only offer basic information to the feeding ecology of Japanese macaques but also provide insights to primate’s radiation from tropical to temperate regions. Here this thesis attempts to investigate the ecological factors shaping their gut microbiome at the individual (Chapter 2) and population (Chapter 3) level. In Chapter 2, I compared the stomach and colonic microbiome to explore variation in gut microbiome within the individual. Gut microbiome composition and function distinguishes between the stomach and colon, relating to the physiochemical environment and digestive function. Stomach microbiome is less diverse and related to metabolism of simple sugar. Colonic microbiome, on the other hand, is composed of microbial taxa with fiber- degrading ability. Chapter 3 explores the variation between macaque populations with different accessibility to anthropogenic foods – captive, provisioned, crop-raiding and wild. Result of Chapter 3 shows that the primate gut microbiome is related to the dietary/nutritional intake, since anthropogenic foods tend to contain less fiber and higher digestible carbohydrates. Taken together, this thesis concludes that primate gut microbiome is a dynamic community affected by (1) physiochemical environment in the gut and (2) the host foraging behavior. Given the variation in gut physiology and/or foraging behavior across and within the primate species, a flexible gut microbiome may serve as a “tailor-made” solution for different survival challenges. In the case of Japanese macaques, they may have adapted to the temperate habitats by improving their processing ability for low-quality foods through gut microbiome, while metabolizing the fat deposited from eating fruits and seeds. Taken, this thesis offers insights into the role of gut microbiome in the adaptive radiation of hindgut fermenting primates to the marginal habitats. Facilitating exploitation of low-quality foods, gut microbiome provide buffer against the dietary challenges encountered by its hosts. Examining the macaques’ gut microbiome, this thesis contributes to a better understanding over the feeding ecology of Japanese macaques and primates overall.

参考文献

Abranches, J., Zeng, L., Kajfasz, J. K., Palmer, S., Chakraborty, B., Wen, Z., … Lemos, J. A. (2019). Biology of oral Streptococci. In Gram‐Positive Pathogens (pp. 426–434). John Wiley & Sons, Ltd. doi: 10.1128/9781683670131.ch26

Agetsuma, N., & Nakagawa, N. (1998). Effects of habitat differences on feeding behaviors of Japanese monkeys: Comparison between Yakushima and Kinkazan. Primates, 39(3), 275–289. doi: 10.1007/BF02573077

Amato, K. R., Leigh, S. R., Kent, A., Mackie, R. I., Yeoman, C. J., Stumpf, R. M., … Garber, P. A. (2014). The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra): Gut microbes in howler growth and reproduction. American Journal of Physical Anthropology, 155(4), 652–664. doi: 10.1002/ajpa.22621

Amato, K. R., Leigh, S. R., Kent, A., Mackie, R. I., Yeoman, C. J., Stumpf, R. M., … Garber, P. A. (2015). The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microbial Ecology, 69(2), 434–443. doi: 10.1007/s00248-014-0554-7

Amato, K. R., Martinez-Mota, R., Righini, N., Raguet-Schofield, M., Corcione, F. P., Marini, E., … Leigh, S. R. (2016). Phylogenetic and ecological factors impact the gut microbiota of two neotropical primate species. Oecologia, 180(3), 717–733. doi: 10.1007/s00442-015-3507-z

Amato, K. R., Metcalf, J. L., Song, S. J., Hale, V. L., Clayton, J., Ackermann, G., … Braun, J. (2016). Using the gut microbiota as a novel tool for examining colobine primate GI health. Global Ecology and Conservation, 7, 225–237. doi: 10.1016/j.gecco.2016.06.004

Amato, K. R., Sanders, J. G., Song, S. J., Nute, M., Metcalf, J. L., Thompson, L. R., … R. Leigh, S. (2019). Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. The ISME Journal, 13(3), 576–587. doi: 10.1038/s41396-018-0175-0

Amato, K. R., Yeoman, C. J., Cerda, G., A. Schmitt, C., Cramer, J. D., Miller, M. E. B., … Leigh, S. R. (2015). Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome, 3(1), 53. doi: 10.1186/s40168-015-0120-7

Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., Estrada, A., … Leigh, S. R. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME Journal, 7(7), 1344– 1353. doi: 10.1038/ismej.2013.16

Arumugam, M., Hansen, T., Kleerebezem, M., Tims, S., Zoetendal, E. G., Vos, de, W. M., … MetaHIT Consortium (additional members). (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180. doi: 10.1038/nature09944

Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-Bacterial Mutualism in the Human Intestine. Science, 307(5717), 1915– 1920. doi: 10.1126/science.1104816

Baniel, A., Amato, K. R., Beehner, J. C., Bergman, T. J., Mercer, A., Perlman, R. F., … Snyder-Mackler, N. (2021). Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome, 9(1), 26. doi: 10.1186/s40168-020-00977-9

Biddle, A., Stewart, L., Blanchard, J., & Leschine, S. (2013). Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity, 5(3), 627–640. doi: 10.3390/d5030627

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. doi: 10.1038/s41587-019-0209-9

Bugaut, M. (1987). Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 86(3), 439–472. doi: 10.1016/0305- 0491(87)90433-0

Bugaut, M., & Bentéjac, M. (1993). Biological Effects of Short-Chain Fatty Acids in Nonruminant Mammals. Annual Review of Nutrition, 13, 217–241. doi: 10.1146/annurev.nu.13.070193.001245

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. doi: 10.1038/nmeth.3869

Camilleri, M., Colemont, L. J., Phillips, S. F., Brown, M. L., Thomforde, G. M., Chapman, N., & Zinsmeister, A. R. (1989). Human gastric emptying and colonic filling of solids characterized by a new method. The American Journal of Physiology, 257(2), G284-290. doi: 10.1152/ajpgi.1989.257.2.g284

Chang, N.-C., Su, H.-H., & Lee, L.-L. (2016). Effects of dietary fiber on gut retention time in captive Macaca cyclopis, Macaca fascicularis, Hylobates lar, and Pongo pygmaeus and the germination of ingested seeds. International Journal of Primatology, 37(6), 671–687. doi: 10.1007/s10764-016-9931-z

Chen, T., Long, W., Zhang, C., Liu, S., Zhao, L., & Hamaker, B. R. (2017). Fiber- utilizing capacity varies in Prevotella-versus Bacteroides-dominated gut microbiota. Scientific Reports, 7(1), 2594. doi: 10.1038/s41598-017-02995-4

Cizauskas, C. A. (2008). Zoo animal & wildlife immobilization and anesthesia. Journal of Wildlife Diseases, 44(2), 528–530. doi: 10.7589/0090-3558- 44.2.528

Clauss, M., Jürgen Streich, W., Schwarm, A., Ortmann, S., & Hummel, J. (2007). The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oikos, 116(2), 209–216. doi: 10.1111/j.0030-1299.2007.15461.x

Clauss, M., Streich, W. J., Nunn, C. L., Ortmann, S., Hohmann, G., Schwarm, A., & Hummel, J. (2008). The influence of natural diet composition, food intake level, and body size on ingesta passage in primates. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 150(3), 274–281. doi: 10.1016/j.cbpa.2008.03.012

Clayton, J. B., Al-Ghalith, G. A., Long, H. T., Tuan, B. V., Cabana, F., Huang, H., … Johnson, T. J. (2018). Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Scientific Reports, 8(1), 11159. doi: 10.1038/s41598-018-29277-x

Clayton, J. B., Gomez, A., Amato, K., Knights, D., Travis, D. A., Blekhman, R., … Johnson, T. J. (2018). The gut microbiome of nonhuman primates: Lessons in ecology and evolution. American Journal of Primatology, 80(6), e22867. doi: 10.1002/ajp.22867

Clayton, J. B., Shields‐Cutler, R. R., Hoops, S. L., Al‐Ghalith, G. A., Sha, J. C. M., Johnson, T. J., & Knights, D. (2019). Bacterial community structure and function distinguish gut sites in captive red‐shanked doucs (Pygathrix nemaeus). American Journal of Primatology, 81(10–11), e22977. doi: 10.1002/ajp.22977

Clayton, J. B., Vangay, P., Huang, H., Ward, T., Hillmann, B. M., Al-Ghalith, G. A., … Knights, D. (2016). Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences, 113(37), 10376–10381. doi: 10.1073/pnas.1521835113

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., … Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences, 107(33), 14691–14696. doi: 10.1073/pnas.1005963107

den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D.-J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325–2340. doi: 10.1194/jlr.R036012

Di Pilato, V., Freschi, G., Ringressi, M. N., Pallecchi, L., Rossolini, G. M., & Bechi, P. (2016). The esophageal microbiota in health and disease: Esophageal microbiota and disease. Annals of the New York Academy of Sciences, 1381(1), 21–33. doi: 10.1111/nyas.13127

Dierenfeld, E. S. (1997). Captive wild animal nutrition: A historical perspective. Proceedings of the Nutrition Society, 56(3), 989–999. doi: 10.1079/PNS19970104

Doel, J. J., Benjamin, N., Hector, M. P., Rogers, M., & Allaker, R. P. (2005). Evaluation of bacterial nitrate reduction in the human oral cavity. European Journal of Oral Sciences, 113(1), 14–19. doi: 10.1111/j.1600- 0722.2004.00184.x

Donohue, M. E., Asangba, A. E., Ralainirina, J., Weisrock, D. W., Stumpf, R. M., & Wright, P. C. (2019). Extensive variability in the gut microbiome of a highly- specialized and critically endangered lemur species across sites. American Journal of Primatology, 81(10–11), e23046. doi: 10.1002/ajp.23046

Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R., Taylor, C. M., … Langille, M. G. I. (2019). PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv. doi: 10.1101/672295

Edwards, M. S., & Ullrey, D. E. (1999). Effect of dietary fiber concentration on apparent digestibility and digesta passage in non-human primates. II. Hindgut- and foregut-fermenting folivores. Zoo Biology, 18(6), 537–549. doi: 10.1002/(SICI)1098-2361(1999)18:6<537::AID-ZOO8>3.0.CO;2-F

Fuentes, A., & Hockings, K. J. (2010). The ethnoprimatological approach in primatology. American Journal of Primatology, 72(10), 841–847. doi: 10.1002/ajp.20844

Garber, P. A., Mallott, E. K., Porter, L. M., & Gomez, A. (2019). The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small-bodied primate. American Journal of Primatology, e23003. doi: 10.1002/ajp.23003

Go, M. (2009). Seasonal changes in food resource distribution and feeding sites selected by Japanese macaques on Koshima Islet, Japan. Primates, 51(2), 149–158. doi: 10.1007/s10329-009-0179-5

Groussin, M., Mazel, F., Sanders, J. G., Smillie, C. S., Lavergne, S., Thuiller, W., & Alm, E. J. (2017). Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 8(1), 14319. doi: 10.1038/ncomms14319

Gu, S., Chen, D., Zhang, J.-N., Lv, X., Wang, K., Duan, L.-P., … Wu, X.-L. (2013). Bacterial community mapping of the mouse gastrointestinal tract. PLoS One, 8(10), e74957. doi: 10.1371/journal.pone.0074957

Hamada, Y., Hayakawa, S., Suzuki, J., Watanabe, K., & Ohkura, S. (2003). Seasonal variation in the body fat of Japanese macaques Macaca fuscata. Mammal Study, 28(2), 79–88. doi: 10.3106/mammalstudy.28.79

Hanya, G. (2004a). Diet of a Japanese macaque troop in the coniferous forest of Yakushima. International Journal of Primatology, 25(1), 55–71. doi: 10.1023/B:IJOP.0000014645.78610.32

Hanya, G. (2004b). Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: Effects of food and temperature. American Journal of Primatology, 63(3), 165–177. doi: 10.1002/ajp.20049

Hanya, G. (2010). Ecological Adaptations of Temperate Primates: Population Density of Japanese Macaques. In The Japanese Macaques (Vols. 1–Book, Section, pp. 79–97). Tokyo: Springer Japan. doi: 10.1007/978-4-431-53886- 8_4

Hanya, G., & Aiba, S. (2010). Fruit fall in tropical and temperate forests: Implications for frugivore diversity. Ecological Research, 25(6), 1081–1090. doi: 10.1007/s11284-010-0733-z

Hanya, G., Kiyono, M., Takafumi, H., Tsujino, R., & Agetsuma, N. (2007). Mature leaf selection of Japanese macaques: Effects of availability and chemical content. Journal of Zoology, 273(2), 140–147. doi: 10.1111/j.1469- 7998.2007.00308.x

Hanya, G., Ménard, N., Qarro, M., Ibn Tattou, M., Fuse, M., Vallet, D., … Wada, K. (2011). Dietary adaptations of temperate primates: Comparisons of Japanese and Barbary macaques. Primates, 52(2), 187–198. doi: 10.1007/s10329-011- 0239-5

Hanya, G., Noma, N., & Agetsuma, N. (2003). Altitudinal and seasonal variations in the diet of Japanese macaques in Yakushima. Primates, 44(1), 51–59. doi: 10.1007/s10329-002-0007-7

Hanya, G., Tackmann, J., Sawada, A., Lee, W., Pokharel, S. S., de Castro Maciel, V. G., … Ushida, K. (2020). Fermentation ability of gut microbiota of wild Japanese macaques in the highland and lowland Yakushima: In vitro fermentation assay and genetic analyses. Microbial Ecology, 80(2), 459–474. doi: 10.1007/s00248-020-01515-8

Hanya, G., Tsuji, Y., & Grueter, C. C. (2013). Fruiting and flushing phenology in Asian tropical and temperate forests: Implications for primate ecology. Primates, 54(2), 101–110. doi: 10.1007/s10329-012-0341-3

Hayakawa, T., Nathan, S. K. S. S., Stark, D. J., Saldivar, D. A. R., Sipangkui, R., Goossens, B., … Matsuda, I. (2018). First report of foregut microbial community in proboscis monkeys: Are diverse forests a reservoir for diverse microbiomes? Environmental Microbiology Reports, 10(6), 655–662. doi: 10.1111/1758-2229.12677

Hayakawa, T., Sawada, A., Tanabe, A. S., Fukuda, S., Kishida, T., Kurihara, Y., … Agata, K. (2018). Improving the standards for gut microbiome analysis of fecal samples: Insights from the field biology of Japanese macaques on Yakushima Island. Primates, 59(5), 423–436. doi: 10.1007/s10329-018-0671-x

Hicks, A. L., Lee, K. J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., … Williams, B. L. (2018). Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nature Communications, 9(1), 1786. doi: 10.1038/s41467-018-04204-w

Hill, C. M. (2017). Primate Crop Feeding Behavior, Crop Protection, and Conservation. International Journal of Primatology, 38(2), 385–400. doi: 10.1007/s10764-017-9951-3

Hill, C. M., & Webber, A. D. (2010). Perceptions of nonhuman primates in human- wildlife conflict scenarios. American Journal of Primatology, 72(10), 919–924. doi: 10.1002/ajp.20845

Hill, D. A. (1997). Seasonal variation in the feeding behavior and diet of Japanese macaques (Macaca fuscata yakui) in lowland forest of Yakushima. American Journal of Primatology, 43(4), 305–320. doi: 10.1002/(SICI)1098- 2345(1997)43:4<305::AID-AJP2>3.0.CO;2-0

Hillman, E. T., Lu, H., Yao, T., & Nakatsu, C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes and Environments, 32(4), 300–313. doi: 10.1264/jsme2.ME17017

Hume, I. D., & Sakaguchi, E. (1991). Patterns of digesta flow and digestion in foregut and hindgut fermenters. In Physiological Aspects of Digestion and Metabolism in Ruminants (pp. 427–451). Elsevier. doi: 10.1016/B978-0-12-702290- 1.50026-6

Ilham, K., Rizaldi, Nurdin, J., & Tsuji, Y. (2016). Status of urban populations of the long-tailed macaque (Macaca fascicularis) in West Sumatra, Indonesia. Primates, 58(2), 295–305. doi: 10.1007/s10329-016-0588-1

Iwamoto, T. (1982). Food and nutritional condition of free ranging Japanese monkeys on Koshima Islet during winter. Primates, 23(2), 153–170. doi: 10.1007/BF02381158

Jaman, M. F., & Huffman, M. A. (2008). Enclosure environment affects the activity budgets of captive Japanese macaques (Macaca fuscata). American Journal of Primatology, 70(12), 1133–1144. doi: 10.1002/ajp.20612

Jaman, M. F., Huffman, M. A., & Takemoto, H. (2010). The foraging behavior of Japanese macaques Macaca fuscata in a forested enclosure: Effects of nutrient composition, energy and its seasonal variation on the consumption of natural plant foods. Acta Zoologica Sinica, 56(2), 198–208. doi: 10.1093/czoolo/56.2.198

Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29), 8787–8803. doi: 10.3748/wjg.v21.i29.8787

Jia, T., Zhao, S., Knott, K., Li, X., Liu, Y., Li, Y., … Zhang, C. (2018). The gastrointestinal tract microbiota of northern white-cheeked gibbons (Nomascus leucogenys) varies with age and captive condition. Scientific Reports, 8(1), 3214. doi: 10.1038/s41598-018-21117-2

Kandlikar, G. S., Gold, Z. J., Cowen, M. C., Meyer, R. S., Freise, A. C., Kraft, N. J. B., … Curd, E. E. (2018). ranacapa: An R package and shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Research, 7, 1734. doi: 10.12688/f1000research.16680.1

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1–e1. doi: 10.1093/nar/gks808

Knott, C. D. (1998). Changes in orangutan caloric intake, energy balance, and ketones in response to fluctuating fruit availability. International Journal of Primatology, 19(6), 1061–1079. doi: 10.1023/A:1020330404983

Kurihara, Y., Kinoshita, K., Shiroishi, I., & Hanya, G. (2020). Seasonal variation in energy balance of wild Japanese macaques (Macaca fucata yakui) in a warm- temperate forest: A preliminary assessment in the coastal forest of Yakushima. Primates, 61(3), 427–442. doi: 10.1007/s10329-020-00797-3

Lahti, L., & Shetty, S. (2012). Microbiome R package. Retrieved from http://microbiome.github.io/microbiome

Lambert, J. E. (1998). Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evolutionary Anthropology, 7(1), 8–20. doi: 10.1002/(SICI)1520-6505(1998)7:1<8::AID-EVAN3>3.0.CO;2-C

Lambert, J. E., & Fellner, V. (2012). In vitro fermentation of dietary carbohydrates consumed by African apes and monkeys: Preliminary results for interpreting microbial and digestive strategy. International Journal of Primatology, 33(1), 263–281. doi: 10.1007/s10764-011-9559-y

Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. doi: 10.1038/nbt.2676

Leca, J., Gunst, N., & Huffman, M. A. (2008). Food provisioning and stone handling tradition in Japanese macaques: A comparative study of ten troops. American Journal of Primatology, 70(8), 803–813. doi: 10.1002/ajp.20551

Lee, W., Hayakawa, T., Kiyono, M., Yamabata, N., & Hanya, G. (2019). Gut microbiota composition of Japanese macaques associates with extent of human encroachment. American Journal of Primatology, 81(12), e23072. doi: 10.1002/ajp.23072

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., … Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651. doi: 10.1126/science.1155725

Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R., & Gordon, J. I. (2008). Worlds within worlds: Evolution of the vertebrate gut microbiota. Nature Reviews Microbiology, 6(10), 776–788. doi: 10.1038/nrmicro1978

Li, D., Chen, H., Zhao, J., Zhang, H., & Chen, W. (2019). Potential functions of the gastrointestinal microbiome inhabiting the length of the rat digest tract. International Journal of Molecular Sciences, 20(5), 1232. doi: 10.3390/ijms20051232

Li, H., Li, T., Berasategui, A., Rui, J., Zhang, X., Li, C., … Li, X. (2017). Gut region influences the diversity and interactions of bacterial communities in pikas (Ochotona curzoniae and Ochotona daurica). FEMS Microbiology Ecology, 93(12), fix149. doi: 10.1093/femsec/fix149

Li, X., Liang, S., Xia, Z., Qu, J., Liu, H., Liu, C., … Xiao, L. (2018). Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes. Gigascience, 7(9), 1–10. doi: 10.1093/gigascience/giy100

Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., & Dangl, J. L. (2013). Practical innovations for high-throughput amplicon sequencing. Nature Methods, 10(10), 999–1002. doi: 10.1038/nmeth.2634

Ma, J., Prince, A. L., Bader, D., Hu, M., Ganu, R., Baquero, K., … Aagaard, K. M. (2014). High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature Communications, 5(1), 3889. doi: 10.1038/ncomms4889

Mackie, R. I. (2002). Mutualistic Fermentative Digestion in the Gastrointestinal Tract: Diversity and Evolution. Integrative and Comparative Biology, 42(2), 319–326. doi: 10.1093/icb/42.2.319

Marshall, A. J., & Wrangham, R. W. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28(6), 1219. doi: 10.1007/s10764- 007-9218-5

Matsuda, I., Chapman, C. A., & Clauss, M. (2019). Colobine forestomach anatomy and diet. Journal of Morphology, 280(11), 1608–1616. doi: 10.1002/jmor.21052

McCord, A. I., Chapman, C. A., Weny, G., Tumukunde, A., Hyeroba, D., Klotz, K., … Goldberg, T. L. (2014). Fecal microbiomes of non-human primates in western Uganda reveal species-specific communities largely resistant to habitat perturbation. American Journal of Primatology, 76(4), 347–354. doi: 10.1002/ajp.22238

McKenna, P., Hoffmann, C., Minkah, N., Aye, P. P., Lackner, A., Liu, Z., … Bushman, F. D. (2008). The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathogens, 4(2), e20–e20. doi: 10.1371/journal.ppat.0040020

McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., … Knight, R. (2017). The effects of captivity on the mammalian gut microbiome. Integrative and Comparative Biology, 57(4), 690–704. doi: 10.1093/icb/icx090

McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4), e61217. doi: 10.1371/journal.pone.0061217

Merrell, D. S., Goodrich, M. L., Otto, G., Tompkins, L. S., & Falkow, S. (2003). PH- regulated gene expression of the gastric pathogen Helicobacter pylori. Infection and Immunity, 71(6), 3529–3539. doi: 10/frxv7z

Meyer, W., Kacza, J., Schnapper, A., Verspohl, J., Hornickel, I., & Seeger, J. (2010). A first report on the microbial colonisation of the equine oesophagus. Annals of Anatomy, 192(1), 42–51. doi: 10.1016/j.aanat.2009.10.004

Moeller, A. H., Peeters, M., Ndjango, J.-B., Li, Y., Hahn, B. H., & Ochman, H. (2013). Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 23(10), 1715–1720. doi: 10.1101/gr.154773.113

Moon, C. D., Young, W., Maclean, P. H., Cookson, A. L., & Bermingham, E. N. (2018). Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. MicrobiologyOpen, 7(5), e00677. doi: 10.1002/mbo3.677

Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L., … Gordon, J. I. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332(6032), 970–974. doi: 10.1126/science.1198719

Müller, M., Hermes, G. D. A., Canfora, E. E., Smidt, H., Masclee, A. A. M., Zoetendal, E. G., & Blaak, E. E. (2019). Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. APSselect, 7(2), G361–G369. doi: 10.1152/ajpgi.00283.2019

Muroyama, Y., & Yamada, A. (2010). Conservation: Present Status of the Japanese Macaque Population and Its Habitat. In N. Nakagawa, M. Nakamichi, & H. Sugiura (Eds.), The Japanese Macaques (pp. 143–164). Tokyo: Springer Japan. doi: 10.1007/978-4-431-53886-8_7

Nakagawa, N., Nakamichi, M., & Sugiura, H. (2010). The Japanese macaques. Tokyo; New York: Springer. Retrieved from https://doi.org/10.1007/978-4-431- 53886-8

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2019). vegan: Community ecology package. Retrieved from https://CRAN.R-project.org/package=vegan

Primate Research Institute, Kyoto University (KUPRI). (2010, June 9). Guidelines for care and use of nonhuman primates. Retrieved from https://www.pri.kyoto- u.ac.jp/research/sisin2010/Guidelines_for_Care_and_Use_of_Nonhuman_Pri mates20100609.pdf

Priston, N. E. C., & McLennan, M. R. (2013). Managing humans, managing macaques: Human-macaque conflict in Asia and Africa. In The Macaque Connection: Cooperation and Conflict between Humans and Macaques (Vols. 1–Book, Section, pp. 225–250). doi: 10.1007/978-1-4614-3967-7_14

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., … Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65. PubMed (20203603). doi: 10.1038/nature08821

Reed, A., Pigage, J. C., Pigage, H. K., Glickman, C., & Bono, J. M. (2019). Comparative analysis of microbiota along the length of the gastrointestinal tract of two tree squirrel species (Sciurus aberti and S. niger) living in sympatry. Ecology and Evolution, 9(23), 13344–13358. doi: 10.1002/ece3.5789

Ridlon, J. M., Kang, D. J., Hylemon, P. B., & Bajaj, J. S. (2014). Bile acids and the gut microbiome. Current Opinion in Gastroenterology, 30(3), 332–338. PubMed (24625896). doi: 10.1097/MOG.0000000000000057

Riley, E., Tolbert, B., & Farida, W. (2013). Nutritional content explains the attractiveness of cacao to crop raiding Tonkean macaques. Current Zoology, 59, 160–169. doi: 10.1093/czoolo/59.2.160

Roager, H. M., Hansen, L. B. S., Bahl, M. I., Frandsen, H. L., Carvalho, V., Gøbel, R. J., … Licht, T. R. (2016). Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nature Microbiology, 1(9), 16093. doi: 10.1038/nmicrobiol.2016.93

Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313. doi: 10.1038/nri2515

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. doi: 10.1007/s00394-017-1445-8

Sakai, S. (2002). General flowering in lowland mixed dipterocarp forests of Southeast Asia. Biological Journal of the Linnean Society, 15.

Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31(1), 107–133. doi: 10.1146/annurev.mi.31.100177.000543

Sawada, A., Sakaguchi, E., & Hanya, G. (2011). Digesta passage time, digestibility, and total gut fill in captive Japanese macaques (Macaca fuscata): Effects food type and food intake level. International Journal of Primatology, 32(2), 390–405. doi: 10.1007/s10764-010-9476-5

Seedorf, H., Griffin, N. W., Ridaura, V. K., Reyes, A., Cheng, J., Rey, F. E., … Woebken, D. (2014). Bacteria from diverse habitats colonize and compete in the mouse gut. Cell, 159(2), 253–266. doi: 10.1016/j.cell.2014.09.008

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60. doi: 10.1186/gb-2011-12-6-r60

Sha, J. C. M., & Hanya, G. (2013). Diet, Activity, Habitat Use, and Ranging of Two Neighboring Groups of Food-Enhanced Long-Tailed Macaques (Macaca fascicularis). American Journal of Primatology, 75(6), 581–592. doi: 10.1002/ajp.22137

Sharma, A. K., Petrzelkova, K., Pafco, B., Jost Robinson, C. A., Fuh, T., Wilson, B. A., … Gomez, A. (2020). Traditional human populations and nonhuman primates show parallel gut microbiome adaptations to analogous ecological conditions. MSystems, 5(6). doi: 10.1128/mSystems.00815-20

Shin, N.-R., Whon, T. W., & Bae, J.-W. (2015). Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 33(9), 496–503. doi: 10.1016/j.tibtech.2015.06.011

Springer, A., Fichtel, C., Al‐Ghalith, G. A., Koch, F., Amato, K. R., Clayton, J. B., … Kappeler, P. M. (2017). Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecology and Evolution, 7(15), 5732–5745. doi: 10.1002/ece3.3148

Stevens, C. E., & Hume, I. D. (1998). Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews, 78(2), 393–427. doi: 10.1152/physrev.1998.78.2.393

Sullam, K. E., Essinger, S. D., Lozupone, Catherine A., C. A., O’Connor, M. P., Rosen, G. L., KNIGHT, R., … RUSSELL, J. A. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: A meta- analysis. Molecular Ecology, 21(13), 3363–3378. doi: 10.1111/j.1365- 294X.2012.05552.x

Sun, B., Wang, X., Bernstein, S., Huffman, M. A., Xia, D.-P., Gu, Z., … Li, J. (2016). Marked variation between winter and spring gut microbiota in free-ranging Tibetan macaques (Macaca thibetana). Scientific Reports, 6(1), 26035. doi: 10.1038/srep26035

Theander, O., Westerlund, E., Åman, P., & Graham, H. (1989). Plant cell walls and monogastric diets. Animal Feed Science and Technology, 23(1–3), 205–225. doi: 10.1016/0377-8401(89)90098-9

Tsuji, Y. (2010). Regional, Temporal, and Interindividual Variation in the Feeding Ecology of Japanese Macaques. In The Japanese Macaques (Vols. 1–Book, Section, pp. 99–127). Tokyo: Springer Japan. doi: 10.1007/978-4-431-53886- 8_5

Tsuji, Y., Hanya, G., & Grueter, C. C. (2013). Feeding strategies of primates in temperate and alpine forests: Comparison of Asian macaques and colobines. Primates, 54(3), 201–215. doi: 10.1007/s10329-013-0359-1

Tsuji, Y., Ito, T. Y., Wada, K., & Watanabe, K. (2015). Spatial patterns in the diet of the Japanese macaque Macaca fuscata and their environmental determinants. Mammal Review, 45(4), 227–238. doi: 10.1111/mam.12045

Ueda, Y., Kiyono, M., Nagano, T., Mochizuki, S., & Murakami, T. (2018). Damage control strategies affecting crop-raiding Japanese macaque behaviors in a farming community. Human Ecology: An Interdisciplinary Journal, 46(2), 259–268. doi: 10.1007/s10745-018-9994-x

Vega, N. M. (2019). Experimental evolution reveals microbial traits for association with the host gut. PLoS Biology, 17(2), e3000129. doi: 10.1371/journal.pbio.3000129

Walter, J. (2008). Ecological role of Lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Applied and Environmental Microbiology, 74(16), 4985–4996. doi: 10.1128/AEM.00753-08

Watanabe, K. (1989). Fish: A new addition to the diet of Japanese macaques on Koshima Island. Folia Primatologica, 52(3–4), 124–131. doi: 10.1159/000156391

Wu, Y., Yao, Y., Dong, M., Xia, T., Li, D., Xie, M., … Xu, H. (2020). Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiology, 20(1), 68. doi: 10.1186/s12866-020-01747- 1

Xia, T., Yao, Y., Wang, C., Dong, M., Wu, Y., Li, D., … Xu, H. (2021). Seasonal dynamics of gut microbiota in a cohort of wild Tibetan macaques (Macaca thibetana) in western China. Global Ecology and Conservation, 25, e01409. doi: 10.1016/j.gecco.2020.e01409

Yamada, A., & Muroyama, Y. (2010). Effects of vegetation type on habitat use by crop-raiding Japanese macaques during a food-scarce season. Primates, 51(2), 159–166. doi: 10.1007/s10329-009-0183-9

Yamagiwa, J. (2010). Research History of Japanese Macaques in Japan. In N. Nakagawa, M. Nakamichi, & H. Sugiura (Eds.), The Japanese Macaques (pp. 3–25). Tokyo: Springer Japan. doi: 10.1007/978-4-431-53886-8_1

Yamagiwa, J., & Hill, D. A. (1998). Intraspecific variation in the social organization of Japanese macaques: Past and present scope of field studies in natural habitats. Primates, 39(3), 257–273. doi: 10.1007/BF02573076

Yamauchi, A., & Iwasa, Y. (1995). Coupling of fermentation and foraging strategies of herbivorous mammals. Journal of Theoretical Biology, 172(1), 1–11. doi: 10.1006/jtbi.1995.0001

Yasuda, K., Oh, K., Ren, B., Tickle, T. L., Franzosa, E. A., Wachtman, L. M., … Morgan, X. C. (2015). Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host & Microbe, 17(3), 385–391. doi: 10.1016/j.chom.2015.01.015

Yumoto, T., Noma, N., & Maruhashi, T. (1998). Cheek-pouch dispersal of seeds by Japanese monkeys (Macaca fuscata yakui) on Yakushima Island, Japan. Primates, 39, 325–338. doi: 10.1007/bf02573081

Zhao, J., Yao, Y., Li, D., Xu, H., Wu, J., Wen, A., … Xu, H. (2018). Characterization of the gut microbiota in six geographical populations of Chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment. Microbial Ecology, 76(2), 565–577. doi: 10.1007/s00248-018- 1146-8

Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., … Xie, P. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21(6), 786–796. doi: 10.1038/mp.2016.44

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る