リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanisms of material removal and surface formation in ultraprecision machining of polycrystalline zinc selenide (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanisms of material removal and surface formation in ultraprecision machining of polycrystalline zinc selenide (本文)

Huang, Weihai 慶應義塾大学

2021.09.21

概要

Polycrystalline zinc selenide (p-ZnSe) is a typical infrared optical material that has been widely used in the fabrication of lenses for night vision systems of autonomous vehicles and windows of high-power carbon dioxide lasers, etc. p-ZnSe possesses a much lower hardness, but at the same time exhibit higher brittleness, compared to silicon; also, it consists of crystal grains with various orientations. Therefore, p-ZnSe is a difficult-to-machine material. Unless strictly controlled conditions are applied, it is difficult to avoid surface damage caused by the brittle fracture of p-ZnSe during machining. Meanwhile, owing to the acute toxicity of p-ZnSe, chips generated from the removal processes must be well collected to prevent health hazards and environmental pollution. The overall purposes of this thesis are to understand the material removal and surface formation mechanisms in ultraprecision machining of p-ZnSe when using different shapes of cutting tools, and to propose a chips-free processing method for machining p-ZnSe.

For those purposes, four types of diamond tools including two round-nosed diamond tools, a V-shaped diamond tool, a Berkovich-type diamond indenter, and a spherical diamond tip, are used to machine p-ZnSe. The deformation behavior associated with the orientation of crystal grain and the subsurface microstructural changes of p-ZnSe are investigated for each condition with the help of electron backscatter diffraction (EBSD) technique and Raman spectroscopy.

In the first part of this thesis, two round-nosed diamond tools with nose radii of 1 mm (hereinafter, referred to as R1 tool) and 10 mm (hereinafter, referred to as R10 tool) are used for cutting p-ZnSe, and the fundamental machining characteristics, including surface topography, chip morphology, material microstructural change, and cutting forces are examined. The brittle fracture in terms of submicron-scale pits could be restrained by altering the tool from negative rake to zero rake. A crack-free machined surface is obtained by using the R10 tool. The minimal surface roughness is dominated by the grain boundary steps which tend to form along the twin boundaries that form large angles to the cutting path. The chips produced by both diamond tools have all detected phase transformation, while the phase transformation of the machined workpiece surface is depending on the nose radius of the tool.

In the second part of this thesis, a V-shaped diamond tool is used for creating micro V- shaped grooves on p-ZnSe. The formation of surface defects is strongly dependent on the angle between the groove surface and the cleavage plane of crystal grains. Pre-coating using photosensitive resin on the workpiece surface is conducted to prevent crack generation at the edge of the groove. The effects of the coating layer are numerically analyzed by simulating the stress states in the workpiece using a finite element method (FEM).

In the third part of this thesis, a Berkovich-type diamond indenter is used to perform nanoscratching tests on p-ZnSe. The p-ZnSe is subjected to single and repeated nanoscratching tests in face-forward (FF) and edge-forward (EF) directions. The morphological features of the scratched grooves and the subsurface microstructural changes of the material are characterized. Fishbone-like patterns were observed in the scratched grooves under all conditions, while no phase transformation was detected. However, the residual stresses in the subsurface of the grooves scratched in the FF direction and the EF direction show tensile stress and compressive stress, respectively. Layer separation, i.e., a large thin layer of material peels off from the bulk, is observed in the repeated nanoscratching in the FF direction.

In the fourth part of this thesis, a spherical diamond tip is used to perform the burnishing process on p-ZnSe. Through the burnishing process, p-ZnSe is plastically deformed without chip generation. The local deformation behaviors and subsurface damage formation mechanisms are investigated under dry and oil-lubricated conditions. Phase transformation could be hardly detected in the subsurface, but lattice distortion occurred in the subsurface layer. Two types of micropatterns are created on the p-ZnSe surface by burnishing.

The findings from this thesis will not only assist in understanding the material deformation behaviors of p-ZnSe associated with crystal orientation when using different shapes of diamond tools but also demonstrate the possibility of manufacturing microstructured surfaces on various toxic brittle polycrystalline materials without chip generation.

この論文で使われている画像

参考文献

[1] E.M. Gavrushchuk, Polycrystalline zinc selenide for IR optical applications, Inorganic Materials 39 (2003) 883-899.

[2] H. Gao, X. Wang, D. Guo, Y. Chen, Research progress on ultra-precision machining technologies for soft-brittle crystal materials, Frontiers of Mechanical Engineering 12 (2017) 77-88.

[3] R. Irwan, H. Huang, H.Y. Zheng, H. Wu, Mechanical properties and material removal characteristics of soft-brittle HgCdTe single crystals, Materials Science and Engineering: A 559 (2013) 480-485.

[4] Crystran Ltd., Zinc Sulfide IR Transmission Data, 2021. https://www.crystran.co.uk/optical- materials/zinc-sulphide-multispectral-zinc-sulfide-zns (accessed 29th March 2021).

[5] Crystran Ltd., Zinc Selenide IR Transmission Data, 2021. https://www.crystran.co.uk/optical- materials/zinc-selenide-znse (accessed 29th March 2021).

[6] Crystran Ltd., Germanium IR Transmission Data, 2021. https://www.crystran.co.uk/optical- materials/germanium-ge (accessed 29th March 2021).

[7] Crystran Ltd., Silicon IR Transmission Data, 2021. https://www.crystran.co.uk/optical- materials/silicon-si (accessed 29th March 2021).

[8] E.M. Gavrishchuk, É.V. Yashina, Zinc sulfide and zinc selenide optical elements for IR engineering, Journal of Optical Technology 71 (2004) 822-827.

[9] W. Li, K. Yang, P. Wang, G. Zhang, D. Liu, Experimental investigation of the ultra-precision turning capability of PVD ZnSe, Proc. SPIE 9683, 8th International Symposium on Advanced Optical Manufacturing and Testing Technology: Advanced Optical Manufacturing Technologies, Suzhou, China (2016).

[10] O.V. Timofeev, E.Y. Vilkova, Effect of etching and chemomechanical polishing on the surface quality of polycrystalline ZnSe, Inorganic Materials 46 (2010) 259-263.

[11] E.Y. Vilkova, O.V. Timofeev, Etching and chemical mechanical polishing of ZnSe using inorganic acids, Inorganic Materials 48 (2012) 451-455.

[12] W.J. Zong, Z.M. Cao, C.L. He, C.X. Xue, Theoretical modelling and FE simulation on the oblique diamond turning of ZnS crystal, International Journal of Machine Tools and Manufacture 100 (2016) 55-71.

[13] M. Mukaida, J. Yan, Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo, International Journal of Machine Tools and Manufacture 115 (2017) 2-14.

[14] N. Yoshiharu, K. Masanori, Ultraprecision grinding of potassium dihydrogen phosphate crystals for getting optical surfaces (Abstract Only), Proc.SPIE 3578, Laser-Induced Damage in Optical Materials, (1999).

[15] The Institute of Solid State Physics of the Russian Academy of Sciences, Material safety data sheet of zinc selenide, 2020. http://www.issp.ac.ru/lpcbc/DANDP/znsemsds.html/ (accessed 21 August 2020).

[16] S.S. Joshi. Ultraprecision Machining (UPM). In: Bharat Bhushan (Ed.) Encyclopedia of Nanotechnology Encyclopedia of Nanotechnology. Dordrecht: Springer Netherlands; 2016. p.4253- 4260.

[17] J. Yuan, B. Lyu, W. Hang, Q. Deng, Review on the progress of ultra-precision machining technologies, Frontiers of Mechanical Engineering 12 (2017) 158-180.

[18] Z. Zhang, J. Yan, T. Kuriyagawa, Manufacturing technologies toward extreme precision, International Journal of Extreme Manufacturing 1 (2019) 022001.

[19] H. Huang, X. Li, D. Mu, B.R. Lawn, Science and art of ductile grinding of brittle solids, International Journal of Machine Tools and Manufacture 161 (2021) 103675.

[20] C. Li, F. Zhang, Y. Wu, X. Zhang, Influence of strain rate effect on material removal and deformation mechanism based on ductile nanoscratch tests of Lu2O3 single crystal, Ceramics International 44 (2018) 21486-21498.

[21] F. Klocke, J. Liermann, Roller burnishing of hard turned surfaces, International Journal of Machine Tools and Manufacture 38 (1998) 419-423.

[22] M. Korzynski, Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool, International Journal of Machine Tools and Manufacture 47 (2007) 1956-1964.

[23] M. Korzynski, J. Lubas, S. Swirad, K. Dudek, Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool, Journal of Materials Processing Technology 211 (2011) 84- 94.

[24] C.L. He, W.J. Zong, C.X. Xue, T. Sun, An accurate 3D surface topography model for single-point diamond turning, International Journal of Machine Tools and Manufacture 134 (2018) 42-68.

[25] S. Zhang, Y. Zhou, H. Zhang, Z. Xiong, S. To, Advances in ultra-precision machining of micro- structured functional surfaces and their typical applications, International Journal of Machine Tools and Manufacture 142 (2019) 16-41.

[26] Z.J. Li, F.Z. Fang, H. Gong, X.D. Zhang, Review of diamond-cutting ferrous metals, The International Journal of Advanced Manufacturing Technology 68 (2013) 1717-1731.

[27] J. Guo, J. Zhang, Y. Pan, R. Kang, Y. Namba, P. Shore, X. Yue, B. Wang, D. Guo, A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals, International Journal of Extreme Manufacturing 2 (2020) 012001.

[28] S. Goel, The current understanding on the diamond machining of silicon carbide, Journal of Physics D: Applied Physics 47 (2014) 243001.

[29] J. Yan, Z. Zhang, T. Kuriyagawa, Mechanism for material removal in diamond turning of reaction- bonded silicon carbide, International Journal of Machine Tools and Manufacture 49 (2009) 366-374.

[30] S.J. Zhang, S. To, S.J. Wang, Z.W. Zhu, A review of surface roughness generation in ultra-precision machining, International Journal of Machine Tools and Manufacture 91 (2015) 76-95.

[31] F.Z. Fang, G.X. Zhang, An experimental study of optical glass machining, The International Journal of Advanced Manufacturing Technology 23 (2004) 155-160.

[32] M.A. Rahman, M.R. Amrun, M. Rahman, A.S. Kumar, Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties, International Journal of Machine Tools and Manufacture 115 (2017) 15-28.

[33] X. Yang, B. Zhang, Material embrittlement in high strain-rate loading, International Journal of Extreme Manufacturing 1 (2019) 022003.

[34] T. Ohta, J. Yan, S. Yajima, Y. Takahashi, N. Horikawa, T. Kuriyagawa, High-efficiency machining of single-crystal germanium using large-radius diamond tools, International Journal of Surface Science and Engineering 1 (2007) 374-392.

[35] P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning, Journal of Materials Processing Technology 147 (2004) 181-184.

[36] J. Yan, T. Asami, H. Harada, T. Kuriyagawa, Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining, Precision Engineering 33 (2009) 378-386.

[37] X. Guo, R. Zhai, R. Kang, Z. Jin, D. Guo, Study of the influence of tool rake angle in ductile machining of optical quartz glass, The International Journal of Advanced Manufacturing Technology 104 (2019) 803-813.

[38] H. Lu, D. Lee, J. Kim, S. Kim, Modeling and machining evaluation of microstructure fabrication by fast tool servo-based diamond machining, Precision Engineering 38 (2014) 212-216.

[39] B.D. Beake, A.J. Harris, T.W. Liskiewicz, Review of recent progress in nanoscratch testing, Tribology - Materials, Surfaces & Interfaces 7 (2013) 87-96.

[40] S.Z. Chavoshi, S. Xu, A Review on Micro- and Nanoscratching/Tribology at High Temperatures: Instrumentation and Experimentation, Journal of Materials Engineering and Performance 27 (2018) 3844-3858.

[41] Q. Liu, Z. Liao, D. Axinte, Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale, International Journal of Machine Tools and Manufacture 159 (2020) 103620.

[42] H. Pelletier, A. Durier, C. Gauthier, R. Schirrer, Viscoelastic and elastic–plastic behaviors of amorphous polymeric surfaces during scratch, Tribology International 41 (2008) 975-984.

[43] C. Zhang, P. Feng, J. Zhang, Ultrasonic vibration-assisted scratch-induced characteristics of C-plane sapphire with a spherical indenter, International Journal of Machine Tools and Manufacture 64 (2013) 38-48.

[44] E. Felder, J. Bucaille, Mechanical analysis of the scratching of metals and polymers with conical indenters at moderate and large strains, Tribology International 39 (2006) 70-87.

[45] W. Zheng, Y. Wang, M. Zhou, Q. Wang, L. Ling, Material deformation and removal mechanism of SiCp/Al composites in ultrasonic vibration assisted scratch test, Ceramics International 44 (2018) 15133-15144.

[46] S. Zhang, X. Guo, Z. Jin, R. Kang, D. Guo, W.C. Tang, Surface morphologies and corresponding hardness evolution during nanoscratching, Journal of Materials Research and Technology 9 (2020) 3179-3189.

[47] Z. Wang, H. Zhang, Z. Li, G. Li, J. Zhang, J. Zhang, H.U. Hassan, Y. Yan, A. Hartmaier, T. Sun, Crystal plasticity finite element simulation and experiment investigation of nanoscratching of single crystalline copper, Wear 430-431 (2019) 100-107.

[48] J. Wang, B. Guo, Q. Zhao, C. Zhang, Q. Zhang, H. Chen, J. Sun, Dependence of material removal on crystal orientation of sapphire under cross scratching, Journal of the European Ceramic Society 37 (2017) 2465-2472.

[49] X. Rao, F. Zhang, X. Luo, F. Ding, Y. Cai, J. Sun, H. Liu, Material removal mode and friction behaviour of RB-SiC ceramics during scratching at elevated temperatures, Journal of the European Ceramic Society 39 (2019) 3534-3545.

[50] Y. Wang, D. Raabe, C. Klüber, F. Roters, Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Materialia 52 (2004) 2229-2238.

[51] H.R. Chamani, M.R. Ayatollahi, The effect of Berkovich tip orientations on friction coefficient in nanoscratch testing of metals, Tribology International 103 (2016) 25-36.

[52] Z. Wan, W. Wang, J. Feng, L. Dong, S. Yang, Z. Jiang, Effect of scratch direction on densification and crack initiation of optical glass BK7, Ceramics International 46 (2020) 16754-16762.

[53] S. Wang, C. An, F. Zhang, J. Wang, X. Lei, J. Zhang, An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal, International Journal of Machine Tools and Manufacture 106 (2016) 98-108.

[54] D. Mahajan, R. Tajane, A Review on Ball Burnishing Process, International Journal of Scientific and Research Publications 3 (2013)

[55] A. Teramachi, J. Yan, Improving the surface integrity of additive-manufactured metal parts by ultrasonic vibration-assisted burnishing, Journal of Micro and Nano-Manufacturing 7 (2019)

[56] J.T. Maximov, G.V. Duncheva, A.P. Anchev, M.D. Ichkova, Slide burnishing—review and prospects, The International Journal of Advanced Manufacturing Technology 104 (2019) 785-801.

[57] M. Wang, B. Duan. Materials and Their Biomedical Applications. In: Roger Narayan (Ed.) Encyclopedia of Biomedical Engineering Oxford: Elsevier; 2019. p.135-152.

[58] R.J. Brook. Sintering of Multiphase Ceramics. In: Richard E. TresslerGary L. MessingCarlo G. PantanoRobert E. Newnham (Ed.) Tailoring Multiphase and Composite Ceramics 1st edition. Boston, MA: Springer; 1986. p.1-13.

[59] M. Chen, W. Ding, J. Cheng, H. Yang, Q. Liu, Recent Advances in Laser-Induced Surface Damage of KH2PO4 Crystal, Applied Sciences 10 (2020)

[60] J. Yan, K. Maekawa, J. Tamaki, T. Kuriyagawa, Micro grooving on single-crystal germanium for infrared Fresnel lenses, Journal of Micromechanics and Microengineering 15 (2005) 1925-1931.

[61] M. Mukaida, J. Yan, Fabrication of hexagonal microlens arrays on single-crystal silicon using the tool-servo driven segment turning method, Micromachines 8 (2017) 323.

[62] S. Gao, Y. Wu, R. Kang, H. Huang, Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3, Materials Science in Semiconductor Processing 79 (2018) 165-170.

[63] C. Li, F. Zhang, X. Wang, X. Rao, Repeated nanoscratch and double nanoscratch tests of Lu2O3 transparent ceramics: Material removal and deformation mechanism, and theoretical model of penetration depth, Journal of the European Ceramic Society 38 (2018) 705-718.

[64] J. Yan, J.I. Tamaki, K. Syoji, T. Kuriyagawa, Single-point diamond turning of CaF2 for nanometric surface, The International Journal of Advanced Manufacturing Technology 24 (2004) 640-646.

[65] E.K. Antwi, K. Liu, H. Wang, A review on ductile mode cutting of brittle materials, Frontiers of Mechanical Engineering 13 (2018) 251-263.

[66] F.Z. Fang, L.J. Chen, Ultra-Precision Cutting for ZKN7 Glass, CIRP Annals 49 (2000) 17-20.

[67] J. Yan, T. Asami, H. Harada, T. Kuriyagawa, Crystallographic effect on subsurface damage formation in silicon microcutting, CIRP Annals 61 (2012) 131-134.

[68] Y. Mizumoto, P. Maas, Y. Kakinuma, S. Min, Investigation of the cutting mechanisms and the anisotropic ductility of monocrystalline sapphire, CIRP Annals 66 (2017) 89-92.

[69] Y. Mizumoto, T. Aoyama, Y. Kakinuma, Basic study on Ultraprecision machining of Single-crystal Calcium Fluoride, Procedia Engineering 19 (2011) 264-269.

[70] P.N. Blake, R.O. Scattergood, Ductile-regime machining of germanium and silicon, Journal of the American Ceramic Society 73 (1990) 949-957.

[71] Y. Zhang, N. Hou, L. Zhang, Effect of ultra-precision fly-cutting on the surface integrity of potassium dihydrogen phosphate crystals, Optical Materials Express 10 (2020) 971-980.

[72] M. Lai, X. Zhang, F. Fang, M. Bi, Effects of crystallographic orientation and negative rake angle on the brittle-ductile transition and subsurface deformation in machining of monocrystalline germanium, Precision Engineering 56 (2019) 164-171.

[73] J. Yu, G. Wang, Y. Rong, Experimental study on the surface integrity and chip formation in the micro cutting process, Procedia Manufacturing 1 (2015) 655-662.

[74] E. Brinksmeier, W. Preuss, O. Riemer, R. Rentsch, Cutting forces, tool wear and surface finish in high speed diamond machining, Precision Engineering 49 (2017) 293-304.

[75] J. Yan, Y. Takahashi, J. Tamaki, A. Kubo, T. Kuriyagawa, Y. Sato, Ultraprecision machining characteristics of poly-crystalline germanium, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing 49 (2006) 63-69.

[76] S. Venkatachalam, O. Fergani, X. Li, G.Y. Jiang, K. Chiang, S.Y. Liang, Microstructure Effects on Cutting Forces and Flow Stress in Ultra-Precision Machining of Polycrystalline Brittle Materials, Journal of Manufacturing Science and Engineering 137 (2015)

[77] Z. Wang, T. Sun, H. Zhang, G. Li, Z. Li, J. Zhang, Y. Yan, A. Hartmaier, The interaction between grain boundary and tool geometry in nanocutting of a bi-crystal copper, International Journal of Extreme Manufacturing 1 (2019)

[78] Z. Wang, J. Zhang, J. Zhang, G. Li, H. Zhang, H. Ul Hassan, A. Hartmaier, Y. Yan, T. Sun, Towards an understanding of grain boundary step in diamond cutting of polycrystalline copper, Journal of Materials Processing Technology 276 (2020) 116400.

[79] D. Liu, G. Wang, J. Yu, Y.K. Rong, Molecular dynamics simulation on formation mechanism of grain boundary steps in micro-cutting of polycrystalline copper, Computational Materials Science 126 (2017) 418-425.

[80] D. Jianxin, Z. Hui, W. Ze, L. Yunsong, Z. Jun, Friction and wear behaviors of WC/Co cemented carbide tool materials with different WC grain sizes at temperatures up to 600°C, International Journal of Refractory Metals and Hard Materials 31 (2012) 196-204.

[81] V. Verma, B.V. Manoj Kumar, Tribological characteristics of conventionally sintered TiCN-WC- Ni/Co cermets against cemented carbide, Ceramics International 43 (2017) 368-375.

[82] H.Z. Wu, S.G. Roberts, B. Derby, Residual stress distributions around indentations and scratches in polycrystalline Al2O3 and Al2O3/SiC nanocomposites measured using fluorescence probes, Acta Materialia 56 (2008) 140-149.

[83] N.L. Savchenko, Y.A. Mirovoy, A.S. Buyakov, A.G. Burlachenko, M.A. Rudmin, I.N. Sevostyanova,

S.P. Buyakova, S.Y. Tarasov, Adaptation and self-healing effect of tribo-oxidizing in high-speed sliding friction on ZrB2-SiС ceramic composite, Wear 446-447 (2020) 203204.

[84] Z. Zhang, J. Yan, T. Kuriyagawa, Study on tool wear characteristics in diamond turning of reaction- bonded silicon carbide, The International Journal of Advanced Manufacturing Technology 57 (2011) 117-125.

[85] J. Yan, Z. Zhang, T. Kuriyagawa, Effect of Nanoparticle Lubrication in Diamond Turning of Reaction-Bonded SiC, International Journal of Automation Technology 5 (2011) 307-312.

[86] Z. Li, F. Zhang, X. Luo, Subsurface damages beneath fracture pits of reaction-bonded silicon carbide after ultra-precision grinding, Applied Surface Science 448 (2018) 341-350.

[87] X. Rao, F. Zhang, Y. Lu, X. Luo, F. Chen, Surface and subsurface damage of reaction-bonded silicon carbide induced by electrical discharge diamond grinding, International Journal of Machine Tools and Manufacture 154 (2020) 103564.

[88] G. Feng, J. Guo, G. Zhang, Material removal characteristics of ultra-precision grinding silicon carbide ceramics, Advances in Applied Ceramics 119 (2020) 175-182.

[89] J. Zhang, L. Han, J. Zhang, H. Liu, Y. Yan, T. Sun, Brittle-to-ductile transition in elliptical vibration- assisted diamond cutting of reaction-bonded silicon carbide, Journal of Manufacturing Processes 45 (2019) 670-681.

[90] D. Ghosh, G. Subhash, R. Radhakrishnan, T.S. Sudarshan, Scratch-induced microplasticity and microcracking in zirconium diboride–silicon carbide composite, Acta Materialia 56 (2008) 3011- 3022.

[91] D. Ghosh, G. Subhash, N. Orlovskaya, Measurement of scratch-induced residual stress within SiC grains in ZrB2–SiC composite using micro-Raman spectroscopy, Acta Materialia 56 (2008) 5345- 5354.

[92] F.Z. Fang, V.C. Venkatesh, G.X. Zhang, Diamond turning of soft semiconductors to obtain nanometric mirror surfaces, The International Journal of Advanced Manufacturing Technology 19 (2002) 637-641.

[93] S.A. Shojaee, T.A. Harriman, Y. Qi, D.A. Lucca, B.S. Dutterer, M.A. Davies, T.J. Suleski, Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy, Manufacturing Letters 2 (2014) 35-39.

[94] H. Xiao, R. Liang, O. Spires, H. Wang, H. Wu, Y. Zhang, Evaluation of surface and subsurface damages for diamond turning of ZnSe crystal, Optics Express 27 (2019) 28364-28382.

[95] W. Yau, P. Tseng, H. Wen, C. Tsai, W. Chou, Luminescence properties of mechanically nanoindented ZnSe, Microelectronics Reliability 51 (2011) 931-935.

[96] S. Jian, Y. Lin, Berkovich nanoindentation-induced dislocation energetics and pop-in effects in ZnSe thin films, Journal of Alloys and Compounds 590 (2014) 153-156.

[97] H. Wen, W. Chou, W. Yau, W. Fan, L. Lee, K. Jian, Using nanoindentation and cathodoluminescence to investigate the residual stress of ZnSe, Journal of Alloys and Compounds 625 (2015) 52-56.

[98] C. Pu, L. Dai, H. Li, H. Hu, K. Liu, L. Yang, M. Hong, Pressure-induced phase transitions of ZnSe under different pressure environments, AIP Advances 9 (2019) 025004.

[99] A. Qteish, A. Muñoz, Stability and Structural Properties of ZnS and ZnSe under High Pressure, physica status solidi (b) 223 (2001) 417-422.

[100] A.C. Fischer-Cripps. Nanoindentation Testing. In: Frederick F. Ling (Ed.) Nanoindentation 3rd edition. New York, NY: Springer; 2011. p.21-37.

[101] N.A. Sakharova, J.V. Fernandes, J.M. Antunes, M.C. Oliveira, Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study, International Journal of Solids and Structures 46 (2009) 1095-1104.

[102] G.Z. Voyiadjis, M. Yaghoobi, Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation, Crystals 7 (2017) 321.

[103] J. Jang, G.M. Pharr, Influence of indenter angle on cracking in Si and Ge during nanoindentation, Acta Materialia 56 (2008) 4458-4469.

[104] T. Zhang, Y. Feng, R. Yang, P. Jiang, A method to determine fracture toughness using cube-corner indentation, Scripta Materialia 62 (2010) 199-201.

[105] S. Son, H. Lim, J. Ahn, The effect of vibration cutting on minimum cutting thickness, International Journal of Machine Tools and Manufacture 46 (2006) 2066-2072.

[106] Z. Zhao, S. To, J. Wang, Effects of grains and twins on deformation of commercial pure titanium in ultraprecision diamond turning, Journal of Materials Processing Technology 271 (2019) 10-22.

[107] Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, Y. Xie, Fabrication of flexible and freestanding zinc chalcogenide single layers, Nature Communications 3 (2012) 1057.

[108] O.A. Fedorenko, Y.A. Zagoruiko, N.O. Kovalenko, Mechanical properties of ZnSe : Cr2+ single crystals, Physics of the Solid State 54 (2012) 2253-2255.

[109] M.Q. Jiang, L.H. Dai, Formation mechanism of lamellar chips during machining of bulk metallic glass, Acta Materialia 57 (2009) 2730-2738.

[110] K. Liu, X.P. Li, M. Rahman, K.S. Neo, X.D. Liu, A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers, The International Journal of Advanced Manufacturing Technology 32 (2006) 631.

[111] S. Ning, G. Feng, H. Zhang, W. Zhang, S. Dai, S. Zhou, Fabrication, structure and optical application of Fe2+:ZnSe nanocrystalline film, Optical Materials 89 (2019) 473-479.

[112] L.D. Yao, F.F. Wang, X. Shen, S.J. You, L.X. Yang, S. Jiang, Y.C. Li, K. Zhu, Y.L. Liu, A.L. Pan, B.S. Zou, J. Liu, C.Q. Jin, R.C. Yu, Structural stability and Raman scattering of ZnSe nanoribbons under high pressure, Journal of Alloys and Compounds 480 (2009) 798-801.

[113] J. Yan, Laser micro-Raman spectroscopy of single-point diamond machined silicon substrates, Journal of Applied Physics 95 (2004) 2094-2101.

[114] J. Yan, T. Asami, T. Kuriyagawa, Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy, Precision Engineering 32 (2008) 186-195.

[115] Z. Zhao, S. To, Z. Zhu, T. Yin, A theoretical and experimental investigation of cutting forces and spring back behaviour of Ti6Al4V alloy in ultraprecision machining of microgrooves, International Journal of Mechanical Sciences 169 (2020) 105315.

[116] M. Günay, E. Aslan, 0. Korkut, U. Şeker, Investigation of the effect of rake angle on main cutting force, International Journal of Machine Tools and Manufacture 44 (2004) 953-959.

[117] F.Z. Fang, H. Wu, W. Zhou, X.T. Hu, A study on mechanism of nano-cutting single crystal silicon, Journal of Materials Processing Technology 184 (2007) 407-410.

[118] M. Wan, D. Wen, Y. Ma, W. Zhang, On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone, International Journal of Machine Tools and Manufacture 146 (2019) 103452.

[119] W. Huang, D. Yu, M. Zhang, Q. Cao, J. Yao, Predictive cutting force model for ductile-regime machining of brittle materials, The International Journal of Advanced Manufacturing Technology 98 (2018) 781-790.

[120] S.M. Son, H.S. Lim, J.H. Ahn, Effects of the friction coefficient on the minimum cutting thickness in micro cutting, International Journal of Machine Tools and Manufacture 45 (2005) 529-535.

[121] W.S. Yip, S. To, Reduction of Minimum Cutting Thickness of Titanium Alloys in Micro Cutting by a Magnetic Field Assistance, IEEE Access 7 (2019) 152034-152041.

[122] X. Liu, R.E. DeVor, S.G. Kapoor, An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining, Journal of Manufacturing Science and Engineering 128 (2005) 474- 481.

[123] X. Chen, J. Xu, H. Fang, R. Tian, Influence of cutting parameters on the ductile-brittle transition of single-crystal calcium fluoride during ultra-precision cutting, The International Journal of Advanced Manufacturing Technology 89 (2017) 219-225.

[124] J. Yan, K. Syoji, T. Kuriyagawa, Ductile-brittle transition at large negative tool rake angles, Journal of the Japan Society for Precision Engineering 66 (2000) 1130-1134.

[125] F.Z. Fang, H. Wu, Y.C. Liu, Modelling and experimental investigation on nanometric cutting of monocrystalline silicon, International Journal of Machine Tools and Manufacture 45 (2005) 1681- 1686.

[126] J. Shi, Y. Wang, X. Yang, Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters, Nanoscale Research Letters 8 (2013) 500.

[127] R.H. Geiss, D.T. Read, Need for standardization of EBSD measurements for microstructural characterization of thin film structures, AIP Conference Proceedings 931 (2007) 168-172.

[128] J. Jung, J.I. Yoon, J.G. Kim, M.I. Latypov, J.Y. Kim, H.S. Kim, Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy, npj Computational Materials 3 (2017) 21.

[129] K.W. Ingle, A.G. Crocker, On the structure of high-angle (110) CSL twist boundaries in f.c.c. metals, Philosophical Magazine A 41 (1980) 713-721.

[130] M. Shiojiri, C. Kaito, S. Sekimoto, N. Nakamura, Polarity and inversion twins in ZnSe crystals observed by high-resolution electron microscopy, Philosophical Magazine A 46 (1982) 495-505.

[131] C.J. Shute, B.D. Myers, S. Xie, T.W. Barbee, A.M. Hodge, J.R. Weertman, Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning, Scripta Materialia 60 (2009) 1073-1077.

[132] M. Dao, L. Lu, Y.F. Shen, S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins, Acta Materialia 54 (2006) 5421-5432.

[133] J. Li, B. Liu, H. Luo, Q. Fang, Y. Liu, Y. Liu, A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates, Computational Materials Science 118 (2016) 66-76.

[134] J. Yan, T. Oowada, T. Zhou, T. Kuriyagawa, Precision machining of microstructures on electroless- plated NiP surface for molding glass components, Journal of Materials Processing Technology 209 (2009) 4802-4808.

[135] J. Guo, J. Zhang, H. Wang, K. Liu, A.S. Kumar, Surface quality characterisation of diamond cut V- groove structures made of rapidly solidified aluminium RSA-905, Precision Engineering 53 (2018) 120-133.

[136] J.W. Carr, C. Feger, Ultraprecision machining of polymers, Precision Engineering 15 (1993) 221-237.

[137] J. Yan, Ultraprecision cutting of photoresist/gold composite microstructures, CIRP Annals 60 (2011) 133-136.

[138] H. Sun, G.W.P. Adhyaksa, E.C. Garnett, The Application of Electron Backscatter Diffraction on Halide Perovskite Materials, Advanced Energy Materials 10 (2020) 2000364.

[139] J. Yan, K. Syoji, T. Kuriyagawa, H. Suzuki, Ductile regime turning at large tool feed, Journal of Materials Processing Technology 121 (2002) 363-372.

[140] The Abaqus documentation, Contact cohesive behavior, 2021. https://abaqus- docs.mit.edu/2017/English/SIMACAEITNRefMap/simaitn-c-cohesivebehavior.htm (accessed 29th June 2021).

[141] C. Jiang, G. Zhao, A Preliminary Study of 3D Printing on Rock Mechanics, Rock Mechanics and Rock Engineering 48 (2015) 1041-1050.

[142] PVEducation, Material Properties of ZnSe, 2020. https://www.pveducation.org/pvcdrom/materials/znse (accessed 20 December 2020).

[143] B. Lawn, R. Wilshaw, Indentation fracture: principles and applications, Journal of Materials Science 10 (1975) 1049-1081.

[144] S. Zhang, X. Guo, Z. Jin, R. Kang, D. Guo, Material removal characteristics of precorroded Lu2O3 laser crystals and elastic deformation model during nanoscratch process, Tribology International 143 (2020) 106027.

[145] L. Huang, C. Bonifacio, D. Song, K.V. Benthem, A.K. Mukherjee, J.M. Schoenung, Investigation into the microstructure evolution caused by nanoscratch-induced room temperature deformation in M-plane sapphire, Acta Materialia 59 (2011) 5181-5193.

[146] L. Huang, Z. Zhang, Y. Zhao, W. Yao, A.K. Mukherjee, J.M. Schoenung, Scratch-induced deformation in fine- and ultrafine-grained bulk alumina, Scripta Materialia 63 (2010) 528-531.

[147] A.H. Carreon, P.D. Funkenbusch, Nanoscale properties and deformation of human enamel and dentin, Journal of the Mechanical Behavior of Biomedical Materials 97 (2019) 74-84.

[148] F. Tang, L. Zhang, Subsurface nanocracking in monocrystalline Si (001) induced by nanoscratching, Engineering Fracture Mechanics 124-125 (2014) 262-271.

[149] B. Cheng, H. Lou, A. Sarkar, Z. Zeng, F. Zhang, X. Chen, L. Tan, V. Prakapenka, E. Greenberg, J. Wen, R. Djenadic, H. Hahn, Q. Zeng, Pressure-induced tuning of lattice distortion in a high-entropy oxide, Communications Chemistry 2 (2019) 114.

[150] K. Niitsu, J. Yan, Effects of deep subsurface damages on surface nanostructure formation in laser recovery of grinded single-crystal silicon wafers, Precision Engineering 62 (2020) 213-222.

[151] I. Yonenaga, K. Watanabe, S. Itoh, S. Fujiwara, Dynamics and characters of dislocations in ZnSe, Journal of Materials Science 41 (2006) 2601-2604.

[152] Y. Mizumoto, Y. Kakinuma, Revisit of the anisotropic deformation behavior of single-crystal CaF2 in orthogonal cutting, Precision Engineering 53 (2018) 9-16.

[153] Z. Wang, J. Zhang, Z. Xu, J. Zhang, G. Li, H. Zhang, Z. Li, H.U. Hassan, F. Fang, A. Hartmaier, Y. Yan, T. Sun, Crystal anisotropy-dependent shear angle variation in orthogonal cutting of single crystalline copper, Precision Engineering 63 (2020) 41-48.

[154] B. Meng, D. Yuan, J. Zheng, P. Qiu, S. Xu, Tip-based nanomanufacturing process of single crystal SiC: Ductile deformation mechanism and process optimization, Applied Surface Science 500 (2020) 144039.

[155] Y. Geng, J. Zhang, Y. Yan, B. Yu, L. Geng, T. Sun, Experimental and theoretical investigation of crystallographic orientation dependence of nanoscratching of single crystalline copper, PLOS ONE 10 (2015) e0131886.

[156] J.R. Luo, A. Godfrey, W. Liu, Q. Liu, Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling, Acta Materialia 60 (2012) 1986-1998.

[157] X. Hu, Y. Ni, Z. Zhang, Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation, Nanomaterials 10 (2020)

[158] B. Zheng, F. Fu, L.L. Wang, J. Wang, L. Du, H. Du, Effect of Defects on the Mechanical Deformation Mechanisms of Metal–Organic Framework-5: A Molecular Dynamics Investigation, The Journal of Physical Chemistry C 122 (2018) 4300-4306.

[159] D.E. Spearot, M.A. Tschopp, K.I. Jacob, D.L. McDowell, Tensile strength of 〈100〉 and 〈110〉tilt bicrystal copper interfaces, Acta Materialia 55 (2007) 705-714.

[160] Y. Cai, H.A. Wu, S.N. Luo, A loading-dependent model of critical resolved shear stress, International Journal of Plasticity 109 (2018) 1-17.

[161] National Center for Biotechnology Information, PubChem Compound Summary for CID 4298215, Zinc selenide (ZnSe), 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-selenide-_ZnSe (accessed 16 September 2020).

[162] F.L. Li, W. Xia, Z.Y. Zhou, J. Zhao, Z.Q. Tang, Analytical prediction and experimental verification of surface roughness during the burnishing process, International Journal of Machine Tools and Manufacture 62 (2012) 67-75.

[163] J.T. Maximov, A.P. Anchev, G.V. Duncheva, N. Ganev, K.F. Selimov, V.P. Dunchev, Impact of slide diamond burnishing additional parameters on fatigue behaviour of 2024-T3 Al alloy, Fatigue & Fracture of Engineering Materials & Structures 42 (2019) 363-373.

[164] S. Stephan, M. Dyga, H.M. Urbassek, H. Hasse, The influence of lubrication and the solid-fluid interaction on thermodynamic properties in a nanoscopic scratching process, Langmuir 35 (2019) 16948-16960.

[165] D. Xia, X. Chen, G. Huang, B. Jiang, A. Tang, H. Yang, S. Gavras, Y. Huang, N. Hort, F. Pan, Calculation of Schmid factor in Mg alloys: Influence of stress state, Scripta Materialia 171 (2019) 31- 35.

[166] Y. Ahn, T.N. Farris, S. Chandrasekar, Sliding microindentation fracture of brittle materials: Role of elastic stress fields, Mechanics of Materials 29 (1998) 143-152.

[167] X. Jing, S. Maiti, G. Subhash, A new analytical model for estimation of scratch-induced damage in brittle solids, Journal of the American Ceramic Society 90 (2007) 885-892.

[168] K. Wasmer, M. Parlinska-Wojtan, S. Graça, J. Michler, Sequence of deformation and cracking behaviours of Gallium–Arsenide during nano-scratching, Materials Chemistry and Physics 138 (2013) 38-48.

[169] P. Zhu, Y. Hu, T. Ma, H. Wang, Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process, Tribology Letters 41 (2011) 41-46.

[170] S. Lafaye, C. Gauthier, R. Schirrer, The ploughing friction: analytical model with elastic recovery for a conical tip with a blunted spherical extremity, Tribology Letters 21 (2006) 95-99.

[171] C. Li, F. Zhang, Y. Wu, X. Zhang, Influence of strain rate effect on material removal and deformation mechanism based on ductile nanoscratch tests of Lu2O3 single crystal, Ceramics International 44 (2018) 21486-21498.

[172] Y.Q. Wu, H. Huang, J. Zou, Lattice bending in monocrystalline GaAs induced by nanoscratching, Materials Letters 80 (2012) 187-190.

[173] D. Mergel, Z. Qiao, Correlation of lattice distortion with optical and electrical properties of In2O3:Sn films, Journal of Applied Physics 95 (2004) 5608-5615.

[174] K. Kosai, J. Yan, Effects of cyclic loading on subsurface microstructural changes of zirconia polycrystals in nanoscale mechanical processing, International Journal of Machine Tools and Manufacture 159 (2020) 103626.

[175] S.I. Wright, M.M. Nowell, D.P. Field, A review of strain analysis using electron backscatter diffraction, Microscopy and Microanalysis 17 (2011) 316-329.

[176] A. Kundu, D.P. Field, Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel, Materials Science and Engineering: A 667 (2016) 435-443.

[177] L. Zhang, L. Zhou, W. Zhou, S. Zhang, A.Y. Yi, Design, fabrication and testing of a compact large- field-of-view infrared compound eye imaging system by precision glass molding, Precision Engineering 66 (2020) 87-98.

[178] R. Komiya, T. Kimura, T. Nomura, M. Kubo, J. Yan, Ultraprecision cutting of single-crystal calcium fluoride for fabricating micro flow cells, Journal of Advanced Mechanical Design, Systems, and Manufacturing 12 (2018) JAMDSM0021.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る