リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Donor single nucleotide polymorphism in ACAT1 affects the incidence of graft-versus-host disease after bone marrow transplantation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Donor single nucleotide polymorphism in ACAT1 affects the incidence of graft-versus-host disease after bone marrow transplantation

Kamoshita, Sonoko Murata, Makoto Koyama, Daisuke Julamanee, Jakrawadee Okuno, Shingo Takagi, Erina Miyao, Kotaro Goto, Tatsunori Ozawa, Yukiyasu Miyamura, Koichi Terakura, Seitaro Nishida, Tetsuya Kiyoi, Hitoshi 名古屋大学

2020.01

概要

Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1) is an enzyme that converts cholesterol to cholesteryl esters. A recent in vivo study reported that inhibiting ACAT1 enzyme activity upregulates the membrane cholesterol levels of T cells, enhancing their cytotoxic function. In the present study, we investigated whether the presence of the ACAT1 single nucleotide polymorphism rs11545566 in transplant donors affected the risk of graft-versus-host disease (GVHD) in 116 adult patients who underwent bone marrow transplantation from human leukocyte antigen-identical sibling donors, and who received GVHD prophylaxis with short-term methotrexate and cyclosporine. The frequencies of the AA, AG, and GG genotypes in the donors were 31%, 45%, and 24%, respectively. The cumulative incidences of grade II–IV acute GVHD on day 100 in patients whose donors had AA vs. non-AA genotypes were 6% and 18%, respectively, and those of extensive chronic GVHD at 2 years were 7% and 32%, respectively. Multivariate analyses demonstrated that donor rs11545566 non-AA genotypes showed a trend toward a higher incidence of grade II–IV acute GVHD (P = 0.079), and were significantly associated with a higher incidence of extensive chronic GVHD (P = 0.021). These results suggest that donor ACAT1 rs11545566 genotype may be predictive of GVHD.

参考文献

1. MacMillan ML, Weisdorf DJ, Wagner JE, DeFor TE, Burns LJ, Ramsay NK, et al.

Response of 443 patients to steroids as primary therapy for acute graft-versus-host

disease: comparison of grading systems. Biol Blood Marrow Transplant.

2002;8:387-94.

2. Murata M, Nakasone H, Kanda J, Nakane T, Furukawa T, Fukuda T, et al. Clinical

factors predicting the response of acute graft-versus-host disease to corticosteroid

therapy: an analysis from the GVHD Working Group of the Japan Society for

Hematopoietic

Cell

Transplantation.

Biol

Blood

Marrow

Transplant.

2013;19:1183-9.

3. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet.

2009;373:1550-61.

4. Sugita J. HLA-haploidentical stem cell transplantation using posttransplant

cyclophosphamide. Int J Hematol. 2019;110:30-8.

5. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and

therapy. Nat Rev Immunol. 2012;12:443-58.

6. Gaud G, Lesourne R, Love PE. Regulatory mechanisms in T cell receptor signaling.

Nat Rev Immunol. 2018;18:485-97.

7. Coghill JM, Sarantopoulos S, Moran TP, Murphy WJ, Blazar BR, Serody JS.

Effector CD4+ T cells, the cytokines they generate, and GVHD: something old and

21

something new. Blood. 2011;117:3268-76.

8. Anderson RA, Joyce C, Davis M, Reagan JW, Clark M, Shelness GS, et al.

Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and

intestine in nonhuman primates. J Biol Chem. 1998;273:26747-54.

9. Sakashita N, Miyazaki A, Takeya M, Horiuchi S, Chang CC, Chang TY, et al.

Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in

macrophages and in various tissues. Am J Pathol. 2000;156:227-36.

10. Molnár E, Swamy M, Holzer M, Beck-García K, Worch R, Thiele C, et al.

Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor

nanoclustering. J Biol Chem. 2012;287:42664-74.

11. Zech T, Ejsing CS, Gaus K, de Wet B, Shevchenko A, Simons K, et al.

Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR

signalling. EMBO J. 2009;28:466-76.

12. Li BL, Li XL, Duan ZJ, Lee O, Lin S, Ma ZM, et al. Human acyl-CoA:cholesterol

acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase

ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem.

1999;274:11060-71.

13. Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, et al. Potentiating the

antitumour response of CD8(+) T cells by modulating cholesterol metabolism.

Nature. 2016;531:651-5.

22

14. Ohta T, Takata K, Katsuren K, Fukuyama S. The influence of the

acyl-CoA:cholesterol acyltransferase-1 gene (-77G-->A) polymorphisms on plasma

lipid and apolipoprotein levels in normolipidemic and hyperlipidemic subjects.

Biochim Biophys Acta. 2004;1682:56-62.

15. Wang YT, Wang YH, Ma YT, Fu ZY, Yang YN, Ma X, et al. ACAT-1 gene

polymorphism is associated with increased susceptibility to coronary artery disease

in Chinese Han population: a case-control study. Oncotarget. 2017;8:89055-63.

16. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al.

Reduced-intensity conditioning regimen workshop: defining the dose spectrum.

Report of a workshop convened by the center for international blood and marrow

transplant research. Biol Blood Marrow Transplant. 2009;15:367-9.

17. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994

consensus conference on acute GVHD grading. Bone Marrow Transplant.

1995;15:825-8.

18. Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S, et al.

Chronic graft-versus-host disease and other late complications of bone marrow

transplantation. Semin Hematol. 1991;28:250-9.

19. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities

in the presence of competing risks: new representations of old estimators. Stat Med

1999;18:695-706.

23

20. Fine JP and Gray RJ. A proportional hazards model for the subdistribution of a

competing risk. J Amer Statist Assoc. 1999;94:496-509.

21. Cox DR. Regression models and life tables. J Royal Stat Soc [B] 1972;34:187-220.

22. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for

medical statistics. Bone Marrow Transplant, 2013;48:452-8.

23. Gagnon E, Schubert DA, Gordo S, Chu HH, Wucherpfennig KW. Local changes in

lipid environment of TCR microclusters regulate membrane binding by the CD3ε

cytoplasmic domain. J Exp Med. 2012;209:2423-39.

24. Sarantopoulos S, Stevenson KE, Kim HT, Cutler CS, Bhuiya NS, Schowalter M, et

al. Altered B-cell homeostasis and excess BAFF in human chronic graft-versus-host

disease. Blood. 2009;113:3865-74.

25. Huang LH, Gui J, Artinger E, Craig R, Berwin BL, Ernst PA, et al. Acat1 gene

ablation in mice increases hematopoietic progenitor cell proliferation in bone

marrow and causes leukocytosis. Arterioscler Thromb Vasc Biol. 2013;33:2081-7.

26. Martin PJ, Fan W, Storer BE, Levine DM, Zhao LP, Warren EH, et al. Replication

of associations between genetic polymorphisms and chronic graft-versus-host

disease. Blood. 2016;128:2450-6.

27. Takami A. Role of non-HLA gene polymorphisms in graft-versus-host disease. Int J

Hematol. 2013;98:309-18.

28. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al.

24

National Institutes of Health Consensus Development Project on Criteria for Clinical

Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging

Working Group report. Biol Blood Marrow Transplant. 2015;21:389-401.e1.

29. Harkensee C, Oka A, Onizuka M, Middleton PG, Inoko H, Hirayasu K, et al. Single

nucleotide polymorphisms and outcome risk in unrelated mismatched hematopoietic

stem cell transplantation: an exploration study. Blood. 2012;119:6365-72.

30. Murase M, Nishida T, Onizuka M, Inamoto Y, Sugimoto K, Imahashi N, et al.

Cytotoxic T-lymphocyte antigen 4 haplotype correlates with relapse and survival

after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;46:1444-9.

31. Inamoto Y, Murata M, Katsumi A, Kuwatsuka Y, Tsujimura A, Ishikawa Y, et al.

Donor single nucleotide polymorphism in the CCR9 gene affects the incidence of

skin GVHD. Bone Marrow Transplant. 2010;45:363-9.

25

Figure legends

Figure 1

Comparison of the expression level of ACAT1 mRNA in T cells among rs11545566

genotypes. The normalized expression level of ACAT1 of the AA genotype was used as

a reference. The relative expression levels of ACAT1 in (a) CD8-positive T cells and (b)

CD4-positive T cells were compared among three rs11545566 genotypes (AA, n = 3;

AG, n = 4; GG, n = 3) using one-way ANOVA (left) and between the AA (n = 3) and

non-AA (n = 7) genotypes using a t-test (right). Data of two independent experiments

(mean ± S.E.M.) each performed in triplicate are shown.

Figure 2

Impact of donor ACAT1 rs11545566 genotype on the incidence of acute GVHD. (a)

Cumulative incidences of grade II-IV acute GVHD in patients transplanted from donors

with ACAT1 rs11545566 AA (solid line, n = 36), AG (dashed line, n = 52), and GG

(dotted line, n = 28) genotypes are shown. (b) Cumulative incidences of grade II-IV

acute GVHD in patients transplanted from donors with ACAT1 rs11545566 AA (solid

line, n = 36) and non-AA (dashed line, n = 80) genotypes are shown.

Figure 3

Impact of donor ACAT1 rs11545566 genotype on the incidence of chronic GVHD. (a)

26

Cumulative incidences of extensive chronic GVHD in patients transplanted from donors

with ACAT1 rs11545566 AA (solid line, n = 36), AG (dashed line, n = 49), and GG

(dotted line, n = 25) genotypes are shown. (b) Cumulative incidences of extensive

chronic GVHD transplanted from donors with ACAT1 rs11545566 AA (solid line, n =

36) and non-AA (dashed line, n = 74) genotypes are shown.

27

Table 1 Patient characteristics categorized by ACAT1 rs11545566 genotype of the donors

Donor genotype

Number of patients

Median age (range), y

P-value

AA

AG

GG

36

52

28

35 (16 − 58) 36 (15 − 51) 35 (16 − 56)

Age at transplantation, n (%)

15 − 20 y

5 (14)

8 (15)

4 (14)

21 − 30 y

5 (14)

11 (21)

7 (25)

31 − 40 y

12 (33)

16 (31)

8 (29)

41 − 50 y

9 (25)

15 (29)

6 (21)

51 − 58 y

5 (14)

2 (4)

3 (11)

Male

23 (64)

32 (62)

12 (43)

Female

13 (36)

20 (38)

16 (57)

Male patient from female donor

12 (33)

17 (33)

5 (18)

Other combinations

24 (67)

35 (67)

23 (82)

Acute myeloid leukemia

12 (33)

16 (31)

7 (25)

Acute lymphoblastic leukemia

5 (14)

8 (15)

6 (21)

Chronic myeloid luekemia

9 (25)

18 (34)

7 (25)

Myelodysplastic syndrome

6 (17)

2 (4)

2 (7)

0 (0)

1 (2)

1 (4)

Non-malignancies

Disease risk, n (%)

4 (11)

7 (14)

5 (18)

Standard-risk

28 (78)

41 (79)

20 (71)

High-risk

8 (22)

11 (21)

8 (29)

Positive

26 (72)

45 (87)

22 (79)

Negative

6 (17)

2 (4)

4 (14)

Unknown

4 (11)

5 (10)

2 (7)

MAC

35 (97)

50 (96)

25 (89)

RIC

1 (3)

2 (4)

3 (11)

0.83

Sex, n (%)

0.18

Sex mismatch between patient and donor, n (%)

0.31

Diagnosis, n (%)

#1

Other malignancies

#2

0.65

0.74

Cytomegalovirus serostatus, n (%)

0.31

Conditioning regimen, n (%)

0.31

#1 Other malignancies include multiple myeloma and mantle cell lymphoma.

#2 Non-malignancies include aplastic anemia, pure red cell aplasia, and paroxysmal nocturnal hemoglobinuria.

Table 2 Multivariate analysis of risk factors for transplant outcome

Outcome and significant factor

Hazard ratio (95% confidence interval)

P-value

Grade II-IV acute GVHD

Age

Donor rs11545566 genotype

<35 y

≥35 y

7.14 (1.58 − 32.2)

AA

Non-AA

3.70 (0.88 − 15.6)

Standard-risk

High-risk

3.12 (1.29 − 7.74)

AA

Non-AA

5.62 (1.29 − 24.5)

Standard-risk

High-risk

2.67 (1.22 − 5.85)

<35 y

≥35 y

3.45 (1.18 − 10.0)

<35 y

≥35 y

2.25 (1.17 − 4.33)

Standard-risk

High-risk

2.51 (1.33 − 4.19)

0 or I

II − IV

2.08 (1.03 − 4.19)

0.011

0.079

Extensive chronic GVHD

Disease risk

Donor rs11545566 genotype

0.014

0.021

Relapse rate

Disease risk

0.014

NRM

Age

0.023

OS rate

Age

Disease risk

Acute GVHD

0.015

0.004

0.038

Figure 1 (a) P = 0.098 1.0 0.5 1.5 Relative expression level Relative expression level 1.5 P = 0.027 1.0 0.5 0.0 0.0 AA AG GG AA non-AA (b) P = 0.025 1.0 0.5 1.5 Relative expression level Relative expression level 1.5 P = 0.098 1.0 0.5 0.0 0.0 AA AG GG AA non-AA Figure 2 (a) Cumulative incidence of

grade II-IV acute GVHD

100 P = 0.169 80 60 40 20 0 0 20 60 80 40 Days after transplantation 100 (b) 100 Cumulative incidence of

grade II-IV acute GVHD

P = 0.06 80 60 40 20 0 0 20 60 80 40 Days after transplantation 100 Figure 3 (a) Cumulative incidence of

extensive chronic GVHD

100 P = 0.022 80 60 40 20 0 0 0.5 1.5 2.0 1.0 Years after transplantation (b) Cumulative incidence of

extensive chronic GVHD

100 P = 0.008 80 60 40 20 0 0 0.5 1.5 2.0 1.0 Years after transplantation ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る