リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In situ photo-on-demand phosgenation reactions with chloroform for syntheses of polycarbonates and polyurethanes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In situ photo-on-demand phosgenation reactions with chloroform for syntheses of polycarbonates and polyurethanes

Tsuda, Akihiko 津田, 明彦 ツダ, アキヒコ 神戸大学

2023.09

概要

Phosgene is an important carbonyl source for industrial production of polycarbonates (PCs) and polyurethanes (PUs). However, since it is highly toxic, alternative compounds and/or new phosgenation reactions have been explored for safety reasons. Given this background, we found a novel photochemical reaction enabling the synthesis of phosgene from chloroform. Subsequently, we developed new phosgenation reactions and reaction systems, and the key objective was “safe application” to organic synthesis. This focus review reports our recent use of in situ photo-on-demand phosgenations of alcohols and amines in synthesizing PC, PU, and their precursors, such as chloroformates, carbonate esters, and diisocyanates, in batch reaction systems, which are preferable for laboratory or small-scale industrial syntheses. We believe that the present reactions have advantages over conventional phosgenation reactions, especially in terms of safety and environmental impacts, and are expected to make positive contributions to practical organic syntheses in both academia and industry.

この論文で使われている画像

参考文献

1. Babad H, Zeiler AG. The chemistry of phosgene. Chem Rev.

1973;73:75–91.

2. Cotarca L, Eckert H. Phosgenations-a handbook. Weinheim:

Wiley-VCH; 2003.

3. Nakata M. An overview on polycarbonate. Kobunshi.

1997;46:558–61.

4. Liu J, Yee AF. Enhancing plastic yielding in polyestercarbonate

glasses by 1,4-cyclohexylene linkage addition. Macromolecules.

1998;31:7865–70.

5. Saunders JH, Slocombe RJ. The chemistry of the organic isocyanates. Chem Rev. 1948;43:203–2018.

6. Arnold RG, Nelson JA, Verbanc JJ. Recent advances in isocyanate chemistry. Chem Rev. 1957;57:47–76.

7. Ozaki S. Recent advances in isocyanate chemistry. Chem Rev.

1972;72:457–96.

8. Hardy DVN Preparation of aryl carbimides. J Chem Soc.

1934:2011.

9. Gill JE, MacGillivray R, Munro J Preparation of symmetrical

aromatic triamines and triisocyanates. J Chem Soc. 1949:1753–4.

10. Slocombe RJ, Hardy EE, Saunders JH, Jenkins RL. Phosgene

derivatives. The preparation of isocyanates, carbamyl chlorides

and cyanuric acid. J Am Chem Soc. 1950;72:1888–91.

11. Pauluhn J. Phosgene inhalation toxicity: update on mechanisms

and mechanism-based treatment strategies. Toxicology.

2021;450:152682.

12. Rossi GE, Winfield JM, Mitchell CJ, Meyer N, Jones DH, Carr

RH, et al. Phosgene formation via carbon monoxide and

dichlorine reaction over an activated carbon catalyst: reaction

kinetics and mass balance relationships. Appl Catal A-Gen.

2020;602:117688.

911

13. Rossi GE, Winfield JM, Meyer N, Jones DH, Carr RH, Lennon D.

Phosgene synthesis catalysis: the influence of small quantities of

bromine in the chlorine feedstream. Ind Eng Chem Res.

2021;60:3363–73.

14. Voßnacker P, Wüst A, Keilhack T, Müller C, Steinhauer S,

Beckers H, et al. Novel synthetic pathway for the production of

phosgene. Sci Adv. 2021;7:eabj5186.

15. Eckert H, Forster B. Triphosgene, a crystalline phosgene substitute. Angew Chem Int Ed Engl. 1987;26:894–5.

16. Yasukouchi H, Nishiyama A, Mitsuda M. Safe and efficient

phosgenation reactions in a continuous flow reactor. Org Process

Res Dev. 2018;22:247–51.

17. Ganiu MO, Nepal B, Van Houten JP, Kartika R. A decade review

of triphosgene and its applications in organic reactions. Tetrahedron. 2020;76:131553–76.

18. Cotarca L, Geller T, Répási J. Bis(trichloromethyl)carbonate

(BTC, Triphosgene): a safer alternative to phosgene? Org Process

Res Dev. 2017;21:1439–46.

19. Fukuoka S, Fukawa I, Adachi T, Fujita H, Sugiyama N, Sawa T.

Industrialization and expansion of green sustainable chemical

process: a review of non-phosgene polycarbonate from CO2. Org

Process Res Dev. 2019;23:145–69.

20. Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H.

Isocyanate-free routes to polyurethanes and poly(hydroxy Urethane)s. Chem Rev. 2015;115:12407–39.

21. Tsuda A A reaction mixture obtained by photo-irradiation of

halogenated hydrocarbon and its use as a source of halogen or

carbonyl halide. Japanese Patent. JP2013181028 A. 2013.

22. Kuwahara Y, Zhang AL, Soma H, Tsuda A. Photochemical

molecular storage of Cl2, HCl, and COCl2: synthesis of organochlorine compounds, salts, ureas, and polycarbonate with photodecomposed chloroform. Org Lett. 2012;14:3376–9.

23. Kawakami K, Tsuda A. Brominated methanes as photo-responsive

molecular storage of elemental Br2. Chem Asian J.

2012;7:2240–52.

24. Zhang A, Kuwahara Y, Hotta Y, Tsuda A. Organic syntheses with

photochemically generated chemicals from tetrachloroethylene.

Asian J Org Chem. 2013;2:572–8.

25. Tsuda A Preparation of halogenated carboxylate esters by irradiating light to halocarbons and alcohols in the presence of oxygen. WIPO Patent. WO2015/156245 A1. 2015.

26. Liang F, Yanai M, Suzuki Y, Tsuda A. Photo-on-demand synthesis of chloroformates with a chloroform solution containing an

alcohol and its one-pot conversion to carbonates and carbamates.

Org Lett. 2020;22:3566–9.

27. Liang F, Eda K, Okazoe T, Wada A, Mori N, Konishi K, et al.

Photo-on-demand synthesis of Vilsmeier reagents with chloroform

and their applications to one-pot organic syntheses. J Org Chem.

2021;86:6504–17.

28. Hashimoto Y, Hosokawa S, Liang F, Suzuki Y, Dai N, Tana G,

et al. Photo-on-demand base-catalyzed phosgenation reactions

with chloroform: synthesis of arylcarbonate and halocarbonate

esters. J Org Chem. 2021;86:9811–9.

29. Hatsumura S, Hashimoto Y, Hosokawa S, Nagao A, Eda K,

Harada H, et al. Reactivity and product selectivity of fluoroalkyl

carbonates in substitution reactions with primary alcohols and

amines. J Org Chem. 2022;87:11572–82.

30. Muranaka R, Liu Y, Okada I, Okazoe T, Tsuda A. Photo-ondemand phosgenation reactions with chloroform for selective

syntheses of N-substituted ureas and isocyanates. ACS Omega.

2022;7:5584–94.

31. Suzuki Y, Liang F, Okazoe T, Okamoto H, Takeuchi Y, Tsuda A.

Photo-on-demand phosgenation reactions with chloroform triggered by Cl2 upon irradiation with visible light: syntheses of

chloroformates, carbonate esters, and isocyanates. Chem Lett.

2022;51:549–51.

912

A. Tsuda

32. Sugimoto T, Kuwahara T, Liang F, Wang H, Tsuda A. Photo-ondemand synthesis of α-amino acid N-carboxyanhydrides with

chloroform. ACS Omega. 2022;7:39250–7.

33. Akamatsu T, Shele M, Matsune A, Kashiki Y, Liang F, Okazoe T,

et al. Photo-on-demand in situ synthesis of N-substituted trichloroacetamides with tetrachloroethylene and their conversions to

ureas, carbamates, and polyurethanes. ACS Omega. 2023;8:2669–84.

34. Liu Y, Okada I, Tsuda A. Flow photo-on-demand phosgenation

reactions with chloroform. Org Process Res Dev.

2022;26:3336–44.

35. Chapman AT. The peroxidation of chloroform. J Am Chem Soc.

1935;57:419–22.

36. Baskerville C, Hamor WA. The chemistry of anaesthetics, IV:

Chloroform. J Ind Eng Chem. 1912;4:571–8.

37. Russell BR, Edwards LO, Raymonda JW. Vacuum ultraviolet

absorption spectra of the chloromethanes. J Am Chem Soc.

1973;95:2129–33.

38. Saunders JH, Slocombe RJ, Hardy EE. The vapor phase reaction

between phosgene and alcohols. J Am Chem Soc.

1951;73:3796–7.

39. Helgen C, Bochet CG. Photochemical protection of amines with

Cbz and Fmoc groups. J Org Chem. 2003;68:2483–6.

40. Ohkuma S, Sakai I. Detection of aromatic primary amines by a

photochemical reaction with pyridine. Bunseki Kagaku (Japanese). 1975;24:385–7.

41. Prather KA, Lee YT. The photodissociation of pyridine at 193 nm.

Isr J Chem. 1994;34:43–53.

42. Kamps JH, Hoeks T, Kung K, Lens JP, McCloskey PJ, Noordove

BAJ, et al. Activated carbonates: enabling the synthesis of differentiated polycarbonate resins via melt transcarbonation. Polym

Chem. 2016;7:5294–303.

43. Bhattacharyya D, Hamrin CE, Northey RP. Oxidation of hazardous organics in a two-phase fluorocarbon-water system. Haz

Waste Haz. Mater. 1986;3:405–29.

44. Slater B, McCormack A, Avdeef A, Comer J. PH-metric logP.4.

comparison of partition coefficients determined by HPLC and

potentiometric methods to literature values. J Pharm Sci.

1994;83:1280–3.

45. Schaller KH, Valentin H. The MAK‐collection for occupational

health and safety; Wiley-VCH Weinheim. 2012:217–35.

46. Kütt A, Leito I, Kaljurand I, Sooväli L, Vlasov VM, Yagupolskii

LM, et al. A comprehensive self-consistent spectrophotometric

acidity scale of neutral brønsted acids in acetonitrile. J Org Chem.

2006;71:2829–38.

47. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury

as a global pollutant: sources, pathways, and effects. Environ Sci

Technol. 2013;47:4967.

48. Maric D, Burrows JP, Meller R, Moortgat GK. A study of the UVvisible absorption spectrum of molecular chlorine. J Photochem

Photobiol A: Chem. 1993;70:205.

Akihiko Tsuda received his B.E. degree in Organic Chemistry from Shinshu University in 1997 and then received an

M.E. degree in Supramolecular Chemistry from Osaka University in 1999. He obtained his Ph.D. in Organic Chemistry

from Kyoto University in 2002. He then began his academic career as an Assistant Professor at Aida Laboratory at the

University of Tokyo. He has been an Associate Professor at Kobe University since 2008. He has also been a Visiting

Associate Professor at Shiga University of Medical Science since 2017 and a Visiting Professor at Inner Mongolia

Medical University since 2018. His research interests include (1) organic chemistry, (2) halogen chemistry, (3)

photochemistry, (4) process chemistry, and (5) polymer science.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る