リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Complete genomic sequence of a novel phytopathogenic Burkholderia phage isolated from fallen leaf compost」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Complete genomic sequence of a novel phytopathogenic Burkholderia phage isolated from fallen leaf compost

Ryota Sasaki Shuhei Miyashita Sugihiro Ando Kumiko Ito Toshiyuki Fukuhara Richard Kormelink Hideki Takahashi 東北大学 DOI:10.1007/s00705-020-04811-3

2020.10.30

概要

In contrast to most Burkholderia species, which affect humans or animals, Burkholderia glumae is a bacterial pathogen of plants that causes panicle blight disease in rice seedlings, resulting in serious damage to rice cultivation. Attempts to combat this disease would benefit from research involving a phage known to attack this type of bacterium. Some Burkholderia phages have been isolated from soil or bacterial species in the order Burkholderiales, but so far there has been no report of a complete genome nucleotide sequence of a phage of B. glumae. In this study, a novel phage, FLC5, of the phytopathogen B. glumae was isolated from leaf compost, and its complete genome nucleotide sequence was determined. The genome consists of a 32,090-bp circular DNA element and exhibits a phylogenetic relationship to members of the genus Peduovirus, with closest similarity to B. multivorans phage KS14. In addition to B. glumae, FLC5 was also able to lyse B. plantarii, a pathogen causing rice bacterial damping-off disease. This is the first report of isolation of a P2-like phage from phytopathogenic Burkholderia, determination of its complete genomic sequence, and the finding of its potential to infect two Burkholderia species: B. glumae and B. plantarii.

この論文で使われている画像

参考文献

1. Coenye T (2013) The Family Burkholderiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Chapter 28. Springer, Berlin, Heidelberg, pp 759–776

2. Hamilton G (2006) Virology: the gene weavers. Nature 441:683–685

3. Suttle CA (2007) Marine viruses-major players in the global ecosystem. Nat Rev Microbiol 5:801–812

4. Thomas CM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

5. Gill JJ, Young R (2011) Therapeutic applications of phage biology: history, practice and recommendations. In: Miller AA, Miller PF (eds) emerging trends in antibacterial discovery: answering the call to arms. Academic Press, Norfolk, Caister, pp 367–410

6. Lynch KH, Dennis JJ (2014) Genomics of Burkholderia phages. In: Coenye T, Mahenthiralingam E (eds) Burkholderia, from genomes to function. Academic Press, Norfolk, Caister, pp 221–250

7. Semler DD, Lynch KH, Dennis JJ (2012) The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections. Front Cell Infect Microbiol 1:27

8. Summer EJ, Gill JJ, Upton C, Gonzalez CF, Young R (2007) Role of phages in the pathogenesis of Burkholderia, or “where are the toxin genes in Burkholderia phages?”. Curr Opin Microbiol 10:410–417

9. Chain PSG, Denef VJ, Konstantinidis KT et al (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287

10. Holden MTG, Titball RW et al (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101:14240–14245

11. Holden MTG, Seth-Smith HMB et al (2009) The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–77

12. Yu Y, Kim HS et al (2006) Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiol 6:46

13. Ham JH, Melanson RA, Rush MC (2011) Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12:329–339

14. Uematsu T, Yoshimura D, Nishiyama K, Ibaraki T, Fujii H (1976) Occurrence of bacterial seedling rot in nursery flat, caused by grain rot bacterium Pseudomonas glumae. Ann Phytopathol Soc Jpn 42:310–312 (In Japanese with English abstract)

15. Lee H-H, Park J, Kim J, Park I, Seo YS (2016) Understanding the direction of evolution in Burkholderia glumae through comparative genomics. Curr Genet 62:115–123

16. Francis F, Kim J, Ramaraj T, Farmer A, Milton C, Rush MC, Ham JH (2013) Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands. Mol Genet Genom 288:195–203

17. Lim JY, Lee T-H, Nahm BH, Choi YD, Kim M, Hwang I (2009) Complete genome sequence of Burkholderia glumae BGR1. J Bacteriol 191:3758–3759

18. Adachi N, Tsukamoto S, Inoue Y, Azegami K (2012) Control of bacterial seedling rot and seedling blight of rice by bacteriophage. Plant Dis 96:1033– 1036

19. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci USA 96:2192–2197

20. Ackermann H-W (2011) Bacteriophage taxonomy. Microbiol Aust 32:90–94

21. Seed KD, Dennis JJ (2009) Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother 53:2205–2208

22. Lynch KH, Stothard P, Dennis JJ (2010) Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genom 11:599

23. Azegami K, Nishiyama K, Watanabe Y, Kadota I, Ohuchi A, Fukuzawa C (1987) Pseudomonas plantarii, sp. nov., the causal agent of rice seedling blight. Int J Syst Bacteriol 37:144–152

参考文献をもっと見る