リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「メソポーラスシリカチタニア複合環境浄化触媒の設計指針の提案」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

メソポーラスシリカチタニア複合環境浄化触媒の設計指針の提案

平田, 伸吾 HIRATA, Shingo ヒラタ, シンゴ 九州大学

2022.03.23

概要

揮発性有機化合物(VOC)はシックハウス症候群の原因の一つであり、低濃度でも環境や人体に有害な影響を与えるため、速やかな除去が望まれている。VOC 除去に用いられる吸着材としてゼオライト、シリカゲルや活性炭が挙げられるが、ゼオライトは吸着力が強く触媒再生には加熱が必要であり、分子選択性があるため特定の物質にしか利用できない、活性炭やシリカゲルは多様な物質を吸着できる反面、吸着力が弱いため低濃度のVOC の除去には不向きであるという問題がある。本論文ではメソポーラスシリカ(MS)材料に着目し、シリカネットワークへのTi の組み込みによる固体酸点の形成と、その近傍への TiO2 光触媒の配置をコンセプトとしたメソポーラスシリカチタニア(MST)環境浄化触媒について研究を行っている。

吸着と光分解特性は一般的に市販の吸着材や光触媒との比較による定性的評価がなされており、光分解に対する吸着の影響は定量的に議論されていない。VOC の速やかな除去を達成する吸着・光触媒の開発のために、構造と機能を結びつける定量的な評価・解析手法が求められている。本研究では、吸着に着目した速度論モデルの提案により吸着・光触媒特性の定量化に取り組み、等量微分吸着熱測定による固体酸性の定量化に取り組んだ。

本論文では、MST 吸着・光触媒の速度解析による光触媒特性の定量化および水蒸気吸着熱測定による吸着能の定量化を行い、MST 構造と機能の影響を調査することによって、MST 環境浄化触媒の設計指針を提案することを目的とした。

第1 章では、本研究の背景および目的を述べた。

第2 章では、MST の吸着光触媒材料の触媒特性を定量化するため、吸着を考慮した3 ステップモデルを提案した。反応速度解析の結果から、気相中の VOC を速やかに除去するためには吸着と直接光分解が重要であり、VOC を系から完全に除去するためには吸着光分解が重要であることを明らかにした。メソポーラスシリカに高結晶なTiO2 ナノ粒子が高分散することが重要であるという触媒設計指針を提案した。

第3 章では、光分解機能の向上を目指して、MST へのWO3 の複合を検討した。TiO2 光触媒にWO3 を複合することで光生成キャリアの再結合を抑制し活性の向上につながることが知られている。MST にWO3 を複合することで光触媒能の向上を目指し、複合する WO3 の微粒化の影響を調査した。TEM 観察より、大きな WO3の周りに小さなTiO2 が配置した複合光触媒がシリカマトリックスに分散したことを確認した。第2 章で取り組んだ 3 ステップ速度解析により吸着光触媒能を評価したところ、MS にTiO2 とWO3 をともに複合することで吸着光分解速度定数が増加し、微粒化により WO3 の分散性を向上させることでさらに吸着光分解定数が増加することを定量的に示した。

第 4 章では、固体酸点の定量的解析手法の確立を目的として MST に対して水蒸気吸着測定を行い、等量微分吸着熱によるMST 構造の固体酸性について議論した。水蒸気等量微分吸着熱はシリカネットワークにTi が組み込まれた試料で高い値を示し、シリカネットワーク中のTi が試料最表面だけではなく、多層吸着領域の吸着熱も向上させることを明らかにした。吸着材や光触媒の使用環境として想定される湿度領域で高い吸着熱を示したことから、シリカネットワークに組み込まれたTi が高い固体酸性を持つことを定量化できた。Ti/Si 比の影響を調査したところ、吸着熱はシリカネットワーク中のTi の増加に伴って増大し、TiO2 の析出には依存しないことを明らかにした。多層領域における吸着熱は酸性度とは相関しなかったが、VOC である CH3CHO 吸着量とは相関を示し、VOC の吸着能を予測する指標となることを見出した。

第5 章では、本研究で得た結果を総括し、MST 複合環境浄化触媒の設計指針を提案した。

この論文で使われている画像

参考文献

第 1 章参考文献

[1.1] 厚生労働省、室内空気中化学物質の室内濃度指針値について、https://www.mhlw.go.jp/web/t_docdataId=00tc3866&dataType=1&pageNo=1、参照日 2020.12.09.

[1.2] 特定非営利活動法人日本 VOC 測定協会、http://www.jvma.jp/pg72.html、参照日 2020.12.09.

[1.3] Jack G. Calvert, Glossary of atmospheric chemistry terms, International union of pure and applied chemistry, 62, 2167-2219 (1990). http://doi.org/10.1351/pac199062112167

[1.4] Susan E. Bailey, Trudy J. Olin, R. Mark Bricka, D. Dean Adrian, A review of potentially low-cost sorbents for heavy metals, Water Research, 33, 2469–2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8

[1.5] Sandhya Babel, Tonni Agustiono Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, Journal of Hazardous Materials, 97, 219– 243 (2003). https://doi.org/10.1016/s0304-3894(02)00263-7

[1.6] Marianne Guillemot, Jérôme Mijoin, Samuel Mignard, Patrick Magnoux, Adsorption of Tetrachloroethylene on Cationic X and Y Zeolites: Influence of Cation Nature and of Water Vapor, Industrial and Engineering Chemistry Research , 46, 4614–4620 (2007). https://doi.org/10.1021/ie0616390

[1.7] V. K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – A review, Journal of Environmental Management , 90, 2313–2342 (2009). https://doi.org/10.1016/j.jenvman.2008.11.017

[1.8] Shuhui Wu, Yaquan Wang, Chao Sun, Taotao Zhao, Jingjing Zhao, Ziyang Wang, Wenrong Liu, Jiaxin Lu, Mingxue Shi, Aijuan Zhao, Lingzhen Bu, Zhiqiang Wang, Mengyao Yang, Yaqiong Zhi, Novel preparation of binder-free Y/ZSM-5 zeolite composites for VOCs adsorption, Chemical Engineering Journal, 417, 129172 (2021). https://doi.org/10.1016/j.cej.2021.129172

[1.9] Morteza Davarpanah, Mohammad Feizbakhshan, Zaher Hashisho, David Crompton, Process intensification in binary adsorption of VOC-water vapor on zeolite in a countercurrent fluidized bed adsorber, Chemical Engineering Journal, 423, 130225 (2021). https://doi.org/10.1016/j.cej.2021.130225

[1.10] M.A. Lillo-Rόdenas, D. Cazorla-Amorόs, A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations, Carbon, 43, 1758–1767 (2005). https://doi.org/10.1016/j.carbon.2005.02.023

[1.11] Xueyang Zhang, Bin Gao, Anne Elise Creamer, Chengcheng Cao, Yuncong Li, Adsorption of VOCs onto engineered carbon materials: A review., Journal of Hazardous Materials, 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013

[1.12] Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu, A mini - review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects., Chinese Journal of Chemical Engineering, 31, 153–163 (2021). https://doi.org/10.1016/j.cjche.2020.11.018

[1.13] G. Zhang, Y.F. Zhang, L. Fang, Theoretical study of simultaneous water and VOCs adsorption and desorption in a silica gel rotor, Indoor Air, 18, 37–43 (2008). https://doi.org/10.1111/j.1600-0668.2007.00502.x

[1.14] Hong Sui, Jijiang Liu, Lin He, Xingang Li, Ammi Jani, Adsorption and desorption of binary mixture of acetone and ethyl acetate on silica gel, Chemical Engineering Science, 197, 185–194 (2019). https://doi.org/10.1016/j.ces.2018.12.010

[1.15] Sinan Kutluay, Farabi Temel, Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance., Colloids and Surfaces A: Physicochemical and Engineering Aspects , 609, 125848 (2021). https://doi.org/10.1016/j.colsurfa.2020.125848

[1.16] Katsumi Kaneko, Hayato Otsuka, New IUPAC recommendation and characterization of nanoporous materials with physical adsorption, Accounts of Materials and Surface Research, 5, 25–32 (2020)

[1.17] Weixia Zhang, Hairong Cheng, Qi Niu, Mingli Fu, Haomin Huang, Daiqi Ye, Microbial Targeted Degradation Pretreatment: A Novel Approach to Preparation of Activated Carbon with Specific Hierarchical Porous Structures, High Surface Areas, and Satisfactory Toluene Adsorption Performance, Environmental Science and Technology, 53, 7632–7640 (2019). http://doi.org/10.1021/acs.est.9b01159

[1.18] Hongdi Yu, Fawei Lin, Kai Li, Wenjun Wang, Beibei Yan, Yingjin Song, Guanyi Chen, Triple combination of natural microbial action, etching, and gas foaming to synthesize hierarchical porous carbon for efficient adsorption of VOCs, Environmental Research, 202, 111687 (2021). https://doi.org/10.1016/j.envres.2021.111687

[1.19] Song He, Guanyu Chen, Huan Xiao Guibin Shi, Chichi Ruan, Yuansheng Ma, Huaming Dai, Bihe Yuan, Xianfeng Chen, Xiaobing Yang, Facile preparation of N-doped activated carbon produced from rice husk for CO 2 capture, Journal of Colloid and Interface Science, 582, 90–101 (2021). https://doi.org/10.1016/j.jcis.2020.08.021

[1.20] Miki Inada, Naoya Enomoto, Junichi Hojo, Katsuro Hayashi, Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization, Advanced Powder Technology, 28, 884–889 (2017). http://dx.doi.org/10.1016/j.apt.2016.12.014

[1.21] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C.T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L.Schlenker, A New Family of Mesoporouos Molecular Sieves Prepared with Liquid Crystal Templates, Journal of the American Chemical Society, 114, 10834–10843 (1992). https://doi.org/10.1021/ja00053a020

[1.22] Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melish, Glenn H. Fredrickson, Bradley F. Chmelka, Galen D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279, 548–552 (1998). https://doi.org/10.1126/science.279.5350.548

[1.23] D. Eliche-Quesada, J. Mérida-Robles, P. Maireles-Torres, E. Rodríguez-Castellόn, G. Busca, E. Finocchio, A. Jiménez-Lόpez, Effects of preparation method and sulfur poisoning on the hydrogenation and ring opening of tetralin on NiW / zirconium- doped mesoporous silica catalysts, Journal of Catalyst, 220, 457–467 (2003). https://doi.org/10.1016/S0021-9517(03)00271-9

[1.24] Y. T. Fang, T. Liu, Z. C. Zhang, X. N. Gao, Silica gel adsorbents doped with Al, Ti, and Co ions improved adsorption capacity, thermal stability and aging resistance, Renewable Energy, 63, 755–761 (2014). https://doi.org/10.1016/j.renene.2013.10.034 .

[1.25] Xin-Li Yang, Wei-Lin Dai, Ruihua Gao, Kangnian Fan, Characterization and catalytic behavior of highly active tungsten-doped SBA-15 catalyst in the synthesis of glutaraldehyde using an anhydrous approach, Journal of Catalysis, 249, 278–288 (2007). https://doi.org/10.1016/j.jcat.2007.05.002

[1.26] D. Fuentes-Perujo, J. Santamaría-González, J. Mérida-Robles, E. Rodríguez-Castellόn, A. Jiménez-Lόpez, P. Maireles-Torres, R. Moreno-Tost, R. Mariscal, Evaluation of the acid properties of porous zirconium-doped and undoped silica materials, Journal of Solid State Chemistry, 179, 2182–2189 (2006). https://doi.org/10.1016/j.jssc.2006.04.018

[1.27] M. Brandhorst, J. Zajac, D. J. Jones, J. Rozière, M. Womes, A. Jimenez -Lόpez, E. Rodríguez-Castellόn, Cobalt-, copper- and iron-containing monolithic aluminosilicate-supported preparations for selective catalytic reaction of NO with NH3 at low temperatures, Applied Catalysis B: Environmental , 55, 267–276 (2005). https://doi.org/10.1016/j.apcatb.2004.09.004

[1.28] Matthias Thommes, Katsumi Kaneko, Alexander V. Neimark, James P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol, Kenneth S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, 1051–1069 (2015). https://doi.org/10.1515/pac-20141117

[1.29] Kiyoshi Okada, Mari Nakanome, Yoshikazu Kameshima, Toshihiro Isobe, Akira Nakajima, Water vapor adsorption of CaCl 2-impregnated activated carbon, Materials Research Bulletin, 45, 1549–1553 (2010). https://doi.org/10.1016/j.materresbull.2010.07.027

[1.30] Jae Son Oh, Wang Geun Shim, Jae Wook Lee, Jong Ho Kim, Hee Moon, Gon Seo, Adsorption Equilibrium of Water Vapor on Mesoporous Materials, Journal of Chemical and Engineering Data , 48, 1458–1462 (2003). https://doi.org/10.1021/je0301390

[1.31] Ming-Xi Wang, Zheng-Hong Huang, Wei Lv, Quan-Hong Yang, Feiyu Kang, Kaiming Liang, Water vapor adsorption on low-temperature exfoliated graphene nanosheets, Journal of Physics and Chemistry of Solids , 73, 1440–1443 (2012). https://doi.org/10.1016/j.jpcs.2011.10.048

[1.32] Kiyoshi Okada, Yoshitoshi Saito, Masanori Hiroki, Takahiro Tomita, Water Vapor Srotpion on Mesoporous Gamma-Alumina Prepared by the Selective Leaching Method, Journal of Porous Materials, 4, 253–260 (1997). https://doi.org/10.1023/A:1009621221761

[1.33] G. J. Young, Interaction of Water Vapor with Silica Surface, Journal of Colloid Science, 13, 67–85 (1958). https://doi.org/10.1016/0095-8522(58)90010-2

[1.34] Jiangfeng Yang, Junmin Li, Wei Wang, Libo Li, Jinping Li, Adsorption of CO 2, CH4, and N2 on 8-, 10-, and 12-Membered Ring Hydrophobic Microporous High-Silica Zeolites: DDR, Silicalite-1, and Beta, Industrial and Engineering Chemistry Research , 52, 17856–17864 (2013). https://doi.org/10.1021/ie403217n

[1.35] Haihong Zhao, Ning Zhao, Qin Wang, Feng Li, Feng Wang, Subing Fan, E katerina V. Matus, Zinfer R. Ismagilov, Lei Li, Fukui Ziao, Adsorption equilibrium and kinetics of CO2 on mesocellular foams modified HKUST-1: Experiment and simulation, Journal of CO2 Utilization, 44, 101415 (2021). https://doi.org/10.1016/j.jcou.2020.101415

[1.36] 田部浩三、清山哲郎、笛木和雄、金属酸化物と複合酸化物 調製・物性・構造・触媒作用・無機材質との関連、講談社、413–414 (1978).

[1.37] 八嶋健明、高橋信夫、固体酸触媒、有機合成化学、36, 501 –506 (1978).

[1.38] Fajun Zhao, Yongjian Liu, Ning Lu, Tianxiao Xu, Guangmeng Zhu, Kai Wang, A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking, Energy Reports, 7, 4249–4272 (2021). https://doi.org/10.1016/j.egyr.2021.06.094

[1.39] Ziaochao Xian, Mengjun He, Yakai Gao, Yi Bi, Yirong Chu, Jun Chen, Lichun Dong, Jin Wang, Shuo Zhao, Acidity tuning of HZSM-5 zeolite by neutralization titration for coke inhibition in supercritical catalytic cracking of n-dodecane, Applied Catalysis A: General, 623, 118278 (2021). https://doi.org/10.1016/j.apcata.2021.118278

[1.40] Kozo Tanabe, Takashi Sumiyoshi, Katsue Shibata, A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides, Bulletin of the chemical society of Japan , 47, 1064–1066 (1974). https:doi.org/10.1246/bcsj.47.1064

[1.41] R. A. Beyerlein, C. Choi-Feng, J. B. Hall, B. J. Huggins, G. J. Ray, Effect of steaming on the defect structure and acid catalysis of protonated zeolites, Topics in Catalysis, 4, 27–42 (1997). https://doi.org/10.1023/A:1019188105794

[1.42] Zichun Wang, Tong Li, Yijiao Jiang, Olivier Lafon, Zongwen Liu, Julien Trébosc, Alfons Baiker, Jean-Paul Amoureux, Jun Huang, Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks, Nature Communications, 11, 1–9 (2020). https://doi.org/10.1038/s41467-019-13907-7

[1.43] A. M. Venezia, R. Murania, V. La Parola, B. Pawelec, J. L. G. Fierro, Post -synthesis alumination of MCM-41: Effect of the acidity on the HDS activity of supported Pd catalysts, Applied Catalysis A: General, 383, 211–216 (2010). https://doi.org/10.1016/j.apcata.2010.06.001

[1.44] Naonobu Katada, Miki Niwa, Silica Monolayer Solid-Acid Catalyst Prepared by CVD, Chemical Vapor Deposition, 2, 125–134 (1996). https://doi.org/10.1002/cvde.19960020402

[1.45] A. Mantilla-Ramírez, G. Ferrat-Torres, J. M. Domínguez, C. Aldana-Rivero, M. Bernal, Influence of reaction parameters and comparison of fluorinated alumina and silica supports in the heterogeneous alkylation of isobutane with olefins, Applied Catalysis A: General, 143, 203–214 (1996). https://doi.org/10.1016/0926 - 860X(96)00084-1

[1.46] Cheves Walling, The Acid Strength of Surfaces, Journal of the American Chemical Society, 72, 1164–1168 (1950). https://doi.org/10.1021/ja01159a025

[1.47] S. Sugunan, J. J. Malayan, Electron-donating, acid-base, and magnetic properties of samaria catalyst, Journal of Adhesion Science and Technology , 9, 73–80 (1995). https://doi.org/10.1163/156856195X00301

[1.48] Hai Lan, Xi Xiao, Shanliang Yuan, Biao Zhang, Guilin Zhou, Yi Jiang, Synergistic Effect of Mo–Fe Bimetal Oxides Promoting Catalytic Conversion of Glycerol to Allyl alcohol, Catalysis Letters, 147, 2187–2199 (2017). https://doi.org/10.1007/s10562-017-2124-3

[1.49] Ping Hu, Wan-Zhong Lang, Xi Yan, Lian-Feng Chu, Ya-Jun Guo, Influence of gelation and calcination temperature on the structure-performance of porous Vox-SiOx solids in non-oxidative propane dehydrogenation, Journal of Catalysis, 358, 108–117 (2018). https://doi.org/10.1016/j.jcat.2017.12.004

[1.50] Vijay Kumar Velisoju, Naresh Gutta, James Tardio, Suresh K. Bhargava, Krishna Vankudoth, Anjaneyulu Chatla, Sudhakar Medak, Venugopal Akula, Hydrodeoxygenation activity of W modified Ni/H-ZSM-5 catalyst for single step conversion of levulinic acid to pentanoic acid: An insight on the reaction mechanism and structure activity relationship, Applied Catalysis A, General, 550, 142–150 (2018). https://doi.org/10.1016/j.apcata.2017.11.008

[1.51] Xin Jiang, Xiaofang Su, Xuefeng Bai, Yuzong Li, Lan Yang, Ke Zhang, Yang Zhang, Yang Liu, Wei Wu, Conversion of metyanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance, Microporous and Mesoporous Materials , 263, 243–250 (2018). https://doi.org/10.1016/j.micromeso.2017.12.029

[1.52] H. Vargas-Villagrán, M. A. Flores-Villeda, I. Puente-Lee, D. A. Solís-Casados, A. Gόmez-Cortés, G. Díaz-Guerrero, T. E. Klimova, Supported nickel catalysts for anisole hydrodeoxygenation: Increase in the selectivity to cyclohexane, Catalysis Today, 349, 26–41 (2020). https://doi.org/10.1016/j.cattod.2018.07.057

[1.53] Subhasis Das, Manideepa Sengupta, Jim Patel, Ankur Bordoloi, A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles, Applied Catalysis A. General, 545, 113–126 (2017). https://doi.org/10.1016/j.apcata.2017.07.044

[1.54] C. Lee, D. J. Parrillo, R. J. Gorte, W. E. Farneth, Relationship between Differential Heats of Adsorption and Brønsted Acid Strengths of Acidic Zeolites: H-ZSM-5 and H-Mordenite, Journal of the American Chemical Society , 118, 3262–3268 (1996). https://doi.org/10.1021/ja953452y

[1.55] Jinqing Jiao, Jianye Fu, Yuechang Wei, Zhen Zhao, Aijun Duan, Chunming Zu, Jianmei Li, Hao Song, Peng Zheng, Zilong Wang, Yannan Yang, Yang Liu, Al - modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal–support interaction, Journal of Catalysis, 356, 269–282 (2017). https://doi.org/10.1016/j.jcat.2017.10.003

[1.56] Mingming Fan, Hui Liu, Pingbo Zhang, Ionic liquid on the acidic organic -inorganic hybrid mesoporous material with good acid-water resistance for biodiesel production, Fuel, 215, 541–550 (2018). https://doi.org/10.1016/j.fuel.2017.11.085

[1.57] Benjamin Umansky, Jozsef Engelhardt, W. Keith Hall, On the strength of solid acids, Journal of Catalysis, 127, 128–140 (1991). https://doi.org/10.1016/0021- 9517(91)90215-P

[1.58] R. Zhang, J. Jagiello, J. F. Hu, Z. -Q. Huang, J. A. Schwarz, A. Datye, Effect of WO 3 loading on the surface acidity of WO 3/Al2O3 composite oxides, Applied Catalysis A: General, 84, 123–139 (1992). https://doi.org/10.1016/0926-860X(92)80111-O

[1.59] 橋本和仁、大谷文章、工藤昭彦、光触媒 基礎・材料開発・応用、NST (2004). [1.60] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, Detlef W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95, 69–96 (1995). https://doi.org/10.1021/cr00033a004

[1.61] Tetsuya Kida, Aya Nishiyama, Zhongqin Hua, Koichi Suematsu, Masayoshi Yasa, Kengo Shimanoe, WO3 Nanolamella Gas Sensor: Porosity Control Using SnO 2 Nanoparticles for Enhanced NO2 Sensing, Langmuir, 30, 2571–2579 (2014). https://doi.org/10.1021/la4049105

[1.62] Ming-Tsun Ke, Mu-Tsun Lee, Chia-Yen Lee, Lung-Ming Fu, A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer, Sensors, 9, 2895–2906 (2009). https://doi.org/10.3390/s90402895

[1.63] A. Mirzaei, S. G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceramics International, 42, 15119–15141 (2016). https://doi.org/10.101uanjun

[1.64] Zhang, Guohua Chen, Detlef W. Bahnemann, Photoelectrocatalytic materials for environmental applications, Journal of Materials Chemistry, 19, 5089–5121 (2009). https://doi.org/10.1039/B821991E

[1.65] Akira Fujishima, Tata N. Rao, Donald A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews , 1, 1–21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2

[1.66] Ryu Abe, Hitoshi Takami, Naoya Murakami, Bunsho Ohtani, Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide, Journal of the American Chemical Society, 130, 7780–7781 (2008). https://doi.org/10.1021/ja800835q

[1.67] Haijin Li, Yong Zhou, Wenguang Tu, Jinhua Ye, Zhigang Zou, State -of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance, Advanced Functional Materials, 25, 998–1013 (2015). https://doi.org/10.1002/adfm.201401636

[1.68] Y. Bessekhouad, D. Robert, J. V. Weber, Bi 2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, Journal of Photochemistry and Photobiology A: Chemistry , 163, 569–580 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.006

[1.69] Li Zhang, Mingke Qin, Wei Yu, Qinghong Zhang, Hongyong Xie, Zhiguo Sun, Qian Shao, Zingkui Guo, Luhan Hao, Yongjun Zheng, Zhanhu Guo, Hetero structured TiO2/WO3 Nanocomposites for Photocatalytic Degradation of Toluene under Visible Light, Journal of The Electrochemical Society , 164, H1086 (2017). https://doi.org/10.1149/2.0881714jes

[1.70] Hongqing Gao, Peng Zhang, Junhua Hu, Jimin Pan, Jiajie Fan, Gu osheng Shao, One- dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation, Applied Surface Science, 391, 211–217 (2017). https://doi.org/10.1016/j.apsusc.2016.06.170

[1.71] Qiang-Yong Tang, Wen-Feng Chen, Yan-Ran Lv, Si-Yuan Yang, Yue-Hua Xu, Z- scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible light irradiation, Separation and Purification Technology, 236, 116243 (2020). https://doi.org/10.1016/j.seppur.2019.116243

[1.72] Shuhong Ruan, Wenqian Huang, Mengjiu Zhao, Haiyan Song, Zhihong Gao, A Z - scheme mechanism of the novel ZnO/CuO n-n heterojunction for photocatalytic degradation of Acid Orange 7, Materials Science in Semiconductor Processing , 107, 104835 (2020). https://doi.org/10.1016/j.mssp.2019.104835

[1.73] 光触媒工業会、PIAJ 製品認証について、https://www.piaj.gr.jp/registered_products/piaj-mark/、参照日 2021.12.20.

[1.74] P. García-Muñoz, J. Carbajo, M. Faraldos, A. Bahamonde, Photocatalytic degradation of phenol and isoproturon: Effect of adding an activated carbon to titania catalyst, Journal of Photochemistry and Photobiology A: Chemistry , 287, 8–18 (2014). https://doi.org/10.1016/j.jphotochem.2014.05.002

[1.75] Yanhui Ao, Junling Xu, Yinyin Gao, Peifang Wang, Chao Wang, Jun Hou, Ji n Qian, Preparation of Ag nanoparticles loaded TiO 2 nanoplate arrays on activated carbon fibers with enhanced photocatalytic activity, Catalysis Communications, 53, 21–24 (2014). https://doi.org/10.1016/j.catcom.2014.04.015

[1.76] Li Na Quan, Yoon Hee Jang, Kelsey A. Stoerzinger, Kevin J. May, Yu Jin Jang, Saji Thomas Kochuveedu, Yang Shao-Horn, Dong Ha Kim, Soft-template-carbonization route to highly textured mesoporous carbon-TiO2 inverse opals for efficient photocatalytic and photoelectrochemical applications, Physical Chemistry Chemical Physics, 16, 9023–9030 (2014). https://doi.org/10.1039/C4CP00803K

[1.77] Zukhra C. Kadirova, Mirabbos Hojamberdiev, Ken-ichi Katsumata, Toshihiro Isobe, Nobuhiro Matsushita, Akira Nakajima, Kiyoshi Okada, Photodegradation of gaseous acetaldehyde and methylene blue in aqueous solution with titanium dioxide -loaded activated carbon fiber polymer materials and aquatic plant ecotoxicity tests, Environmental Science and Pollution Research , 21, 4309–4319 (2014). https://doi.org/10.1007/s11356-013-2405-3

[1.78] Youji Li, Xiaodong Li, Junwen Li, Jing Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Research, 40, 1119– 1126 (2006). https://doi.org/10.1016/j.watres.2005.12.042

[1.79] D. S. Selishchev, P. A. Kolinko and D. V. Kozlov, Influence of adsorption on the photocatalytic properties of TiO2/AC composite materials in the acetone and cyclohexane vapor photooxidation reactions, Journal of Photochemistry and Photobiology A, 229, 11–19 (2012). https://doi.org/10.1016/j.jphotochem.2011.12.006

[1.80] Zhong Pan, Elizabeth A. Stemmler, Hong Je Cho, Wei Fan, Lawrence A. LeBlanc, Howard H. Patterson, Aria Amirbahman, Photocatalytic degradation of 17α- ethinylestradiol(EE2) in the presence of TiO2-doped zeolite, Journal of Hazardous Materials, 279, 17–25 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.040

[1.81] Hsiu-Ling Hsu, Rosilda Selvin, L. Selva Roselin, Prajitha Kumari, Jia -Wei Cao, Photocatalytic efficiency of nanocrystalline zeolite TS-1 for the degradation of methyl orange, Reaction Kinetics and Catalysis Letters , 98, 265–272 (2009). https://doi.org/10.1007/s11144-009-0087-0

[1.82] Silvina Gomez, Candelaria Leal Marchena, María. S. Renzini, Luis Pizzio, Liliana Pierella, In situ generated TiO2 over zeolitic supports as reusable photocatalysts for the degradation of dichlorvos, Applied Catalysis B: Environmental , 162, 167–173 (2015). https://doi.org/10.1016/j.apcatb.2014.06.047

[1.83] Misaki Ito, Shuji Fukahori, Taku Fujiwara, Adsorptive removal and photocatalytic decomposition of sulfamethazine in secondary effluent using TiO 2-seolite composites, Environmental Science and Pollution Research , 21, 834–842 (2014). https://doi.org/10.1007/s11356-013-1707-9

[1.84] Xingfen Chen, Jinli Pang, Guowei Zhou, Bin Sun, Synthesis and characterization of SiO2–PMMA–POEOMA structures and SiO2–TiO2 pomegranate-like hybrid microspheres for the photodecomposition of methyl orange, Colloids and Surfaces A: Physicochemical and Engineering Aspects , 481, 176–185 (2015). https://doi.org/10.1016/j.colsurfa.2015.04.049

[1.85] Guoqing Zu, Jun Shen, Wenqin Wang, Liping Zou, Ya Lian, Zhihua Zhang, Silica - Titania Composite Aerogel Photocatalysts by Chemical Liquid Deposition of Titania onto Nanoporous Silica Scaffolds, ACS Applied Materials and Interfaces, 7, 5400– 5409 (2015). https://doi.org/10.1021/am5089132

[1.86] Takashi Kamegawa, Yasushi Ishiguro, Hiroki Seto, Hiromi Yamashita, Enhanced photocatalytic properties of TiO 2-loaded porous silica with hierarchical microporous and mesoporous architectures in water purification, Journal of Materials Chemistry A, 3, 2323–2330 (2015). https://doi.org/10.1039/C4TA06020B

[1.87] Masataka Yasui, Kiyofumi Katagiri, Shoji Yamanaka, Kei Inumaru, Molecular selective photocatalytic decomposition of alkylanilines by crystalline TiO2 particles and their nanocomposites with mesoporous silica, RSC Advances, 2, 11132–11137 (2012). https://doi.org/10.1039/C2RA21009F

[1.88] Takashi Kasahara, Kei Inumaru, Shoji Yamanaka, Enhanced photocatalytic decomposition of nonylphenol polythoxylate by alkyl-grafted TiO2-MCM-41 organic- inorganic nanostructure, Microporous and Mesoporous Materials , 76, 123–130 (2004). https://doi.org/10.1016/j.micromeso.2004.08.005

[1.89] Kei Inumaru, Takashi Kasahara, Masataka Yasui, Shoji Yamanaka, Direct nanocomposite of crystalline TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst, Chemical Communications , 2131–2133 (2005). https://doi.org/10.1039/B417558A

[1.90] S. Adjimi, N. Sergent, J.-C. Roux, F. Delpech, M. Pera-Titus, K. Chhor, A. Kanaev, P.-X. Thivel, Photocatalytic paper based on sol–gel titania nanoparticles immobilized on porous silica for VOC abatement, Applied Catalysis B: Environmental , 154–155, 123–133 (2014). https://doi.org/10.1016/j.apcatb.2014.02.011

[1.91] Farook Adam, Lingeswarran Muniandy, Radhika Thankappan, Ceria and titania incorporated silica based catalyst prepared from rice husk: Adsorption and photocatalytic studies of methylene blue, Journal of Colloid and Interfces Science , 406, 209–216 (2013). https://doi.org/10.1016/j.jcis.2013.05.066

[1.92] Minoo Tasbihi, Urška Lavrenčič Štangar, Andrijana Sever Škapin, Alenka Ristić, Venčeslav Kaučič, Nataša Novak Tušar, Titania-containing mesoporous silica powders: Structural properties and photocatalytic activity towards is opropanol degradation, Journal of Photochemistry and Photobiology A: Chemistry , 216, 167– 178 (2010). https://doi.org/10.1016/j.jphotochem.2010.07.011

[1.93] Miki Inada, Naoya Enomoto, Junichi Hojo, Fabrication and structural analysis of mesoporous silica-titania for environmental purification, Microporous and Mesoporous Materials, 182, 173–177 (2013). https://doi.org/10.1016/j.micromeso.2013.08.039

[1.94] Muhammad Zulfiqar, suriati Sufian, Nurul Ekmi Rabat, Nurlidia Mansor, Photocatalytic degradation and adsorption of phenol by solvent-controlled TiO2 nanosheets assisted with H2O2 and FeCl3: Kinetic, isotherm and thermodynamic analysis, Journal of Molecular Liquids, 308, 112941 (2020). https://doi.org/10.1016/j.molliq.2020.112941

[1.95] H. A. Abbas, Rabab A. Nasr, Aya Khalaf, Abeer Al Bawab, Tarek S. Jamil, Photocatalytic degradation of methylene blue dye by fluorite type Fe 2Zr2-xWx O7 system under visible light irradiation, Ecotoxicology and Environmental Safety , 196, 110518 (2020). https://doi.org/10.1016/j.ecoenv.2020.110518

[1.96] Seyed Majid Ghoreishian, Ganji Seeta Rama Raju, Kugalur Shanmugam Ranjith, Hoomin Lee, Cheol Hwan Kwak, Bumjun Park, Somayeh Zeinali Nikoo, Young -Kyu Han, Yun Suk Huh, Construction of 2D/2D/2D rGO/p-C3N4/Cu3Mo2O9 heterostructure as an efficient catalytic platform for cascade photo-degradation and photoelectrochemical activity, Applied Surface Science, 511, 145469 (2020). https://doi.org/10.1016/j.apsusc.2020.145469

[1.97] Wagih A. Sadik, Abdel-Ghaffar M. El-Demerdash, Adel W. Nashed, Amr A. Mostafa, Hesham A. Hamad, Highly efficient photocatalytic performance of Cu 2O@TiO2 nanocomposite: influence of various inorganic oxidants and inorganic anions, Journal of Materials Research and Technology , 8, 5405–5414 (2019). https://doi.org/10.1016/j.jmrt.2019.09 .007

[1.98] Mehrdad Farjood, M. A. Zanjanchi, A new synthesis methodology for SiO 2 gel-based nanostructures and their application for elimination of dye pollutants, New Journal of Chemistry, 44, 5386–5395 (2020). https://doi.org/10.1039/D0NJ00093K

[1.99] Katsuki Kusakabe, Masato Ezaki, Akihiro Sakoguchi, Kazumi Oda, Norihiro Ikeda, Photocatalytic behaviors of silica-loaded mesoporous titania, Chemical Engineering Journal, 180, 245–249 (2012). https://doi.org/10.1016/j.cej.2011.11.025

第 2 章参考文献

[2.1] Katsuki Kusakabe, Masato Ezaki, Akihiro Sakoguchi, Kazumi Oda, Norihiro Ikeda, Photocatalytic behaviors of silica-loaded mesoporous titania, Chemical Engineering Journal, 180, 245–249 (2012). https://doi.org/10.1016/j.cej.2011.11.025

[2.2] Shilpa K. Sonar, Reshma V. Wagh, Prashant S. Niphadkar, Praphulla N. Joshi, Silpa S. Deshpande, Shobhana V. Awate, Enhanced Dual-Effect of Adsorption and Photodegradation of SiO2 Embedded TiO2 Hybrid Catalyst for Improved Decolourization of Methylene Blue, Water, Air, & Soil Pollution, 224, 1726–1737 (2013). https://doi.org/10.1007/s11270-013-1726-7

[2.3] Miki Inada, Naoya Enomoto, Junichi Hojo, Fabrication and structural analysis of mesoporous silica-titania for environmental purification, Microporous and Mesoporous Materials, 182, 173–177 (2013). https://doi.org/10.1016/j.micromeso.2013.08.039

[2.4] Xiaxi Yao, Chunbao Zhao, ru He, Xiaoheng Liu, Highly crystalline and silica -embedded titania rhombic shaped nanoparticles with mesoporous structure and its application in photocatalytic degradation of organic compound, Materials Chemistry and Physics , 141, 705–712 (2013). https://doi.org/10.1016/j.matchemphys.2013.05.067

[2.5] Zhang Juan, Zhao Dishun, Yang Liyan, Li Yongbo, Photocatalytic oxidation dibenzothiophene using TS-1, Chemical Engineering Journal, 156, 528–531 (2010). https://doi.org/10.1016/j.cej.2009.04.032

[2.6] Igor Krivtsov, Marina Ilkaeva, Viacheslav Avdin, Sergei Khainakov, Jose R. Garcìa, Salvador Ordòñez, Eva Dìaz, Laura Faba, A hydrothermal peroxo method for preparation of highly crystalline silica–titania photocatalysts, Journal of Colloid and Interface Science, 444, 87–96 (2015). https://doi.org/10.1016/j.jcis.2014.12.044

[2.7] David Ollis, Photocatalyzed and photosensitized conversion of organic dyes on porous and non-porous air–solid surfaces: Kinetic models reconsidered, Applied Catalysis B: Environmental, 165, 111–116 (2015). https://doi.org/10.1016/j.apcatb.2014.09.039

[2.8] M. Le Bechec, N. Kinadjian, D. Ollos, R. Backov, S. Lacombe, Comparison of kinetics of acetone, heptane and toluene photocatalytic mineralization over TiO 2 microfibers and Quartzel® mats, Applied Catalysis B: Environmental , 179, 78–87 (2015). https://doi.org/10.1016/j.apcatb.2015.05.015

[2.9] Catherine Galindo, Patrice Jacques, André Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H 2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations, Journal of Photochemistry and Photobiology A: Chemistry , 130, 35–47 (2000). https://doi.org/10.1016/S1010-6030(99)00199-9

[2.10] M. Muruganandham, M. Swaminathan, Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension, Solar Energy Materials and Solar Cells, 81, 439–457 (2004). https://doi.org/10.1016/j.solmat.2003.11.022

[2.11] Cláudia Gomes da Silva, Joaquim Luís Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 155, 133–143 (2003). https://doi.org/10.1016/S1010-6030(02)00374-X

[2.12] Gun Dae Lee, Soon Ki Jung, Yeon Ju Jeong, Jin Hwan Park, Kwon Take Lim, Byung Hyun Ahn, Seong Soo Hong, Photocatalytic decomposition of 4 -nitrophenol over titanium silicalite (TS-1) catalysts, Applied Catalysis A: General, 239, 197–208 (2003). https://doi.org/10.1016/S0926-860X(02)00389-7

[2.13] Yang Luo, David F. Ollis, Heterogeneous Photocatalytic Oxidation of Trichloroethylene and Toluene Mixtures in Air: Kinetic Promotion and Inhibition, Time-Dependent Catalyst Activity, Journal of Catalysis, 163, 1–11 (1996). https://doi.org/10.1006/jcat.1996.0299

[2.14] Sang Bum Kim, Sung Chang Hong, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Applied Catalysis B: Environmental, 35, 305–315 (2002). https://doi.org/10.1016/S0926-3373(01)00274-0

[2.15] Sihem Helali, Frederic Dappozze, Satoshi Horikoshi, Thu Hoai Bui, Nathalie Perol, Chantal Guillard, Kinetics of the photocatalytic degradation of methylamine: Influence of pH and UV-A/UV-B radiant fluxes, Journal of Photochemistry and Photobiology A: Chemistry, 255, 50–57 (2013). https://doi.org/10.1016/j.jphotochem.2012.12.022

[2.16] 草壁克己・増田隆夫、反応工学、三共出版、(2010).

[2.17] Zhaoyue Li, Xintong Zhang, Shunsuke Nishimoto, Taketoshi Murakami, Akira Fujishima, Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by highly Ordered TiO2 Nanotube Arrays, Environmental Science and Technology , 42, 8547– 8551 (2008). https://doi.org/10.1021/es8016842

[2.18] Birger Hauchecorne, Dieter Terrens, Sammy Verbruggen, Johan A. Martens, Herman Van Langenhove, Kristof Demeestere, Silvia Lenaerts, Elucidating the photocatalytic degradation pathway of acetaldehyde: An FTIR in situ study under atmospheric conditions, Applied Catalysis B: Environmental, 106, 630–638 (2011). https://doi.org/10.1016/j.apcatb.2011.06.026

[2.19] C. L. Bianchi, S. Gatto, C. Pirola, A. Naldoni, A. Di Michele, G. Cerrato, V. Crocellà , V. Capucci, Photocatalytic degradation of acetone, acetaldehyde and toluen e in gas- phase: Comparison between nano and micro-sized TiO2, Applied Catalysis B: Environmental, 146, 123–130 (2014). https://doi.org/10.1016/j.apcatb.2013.02.047

[2.20] Yuko Matsukawa, Shingo Hirata, Miki Inada, Naoya Enomoto, Junichi Hojo, Katsuro Hayashi, Kinetic effects of polymorphs and surface areas on adsorption and photocatalytic decomposition of acetaldehyde on titania, Chemical Engineering Journal, 397, 125422 (2020). https://doi.org/10.1016/j.cej.2020.125422

第 3 章参考文献

[3.1] Jing Cao, Bangde Luo, Haili Lin, Benyan Xu, Shifu Chen, Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties, Applied Catalysis B: Environmental , 111–112, 288–296 (2012). https://doi.org/10.1016/j.apcatb.2011.10.010

[3.2] Chen, Hsin-Kai, Chen, Wen-Fan, Pramod Koshy, Esmaeil Adabifiroozjaei, Liu, Rong, Leigh R. Sheppard, Charles Christopher Sorrell, Effect of tungsten -doping on the properties and photocatalytic performance of titania thin films on glass substrates, Journal of the Taiwan Institute of Chemical Engineers , 67, 202–210 (2016). https://doi.org/10.1016/j.jtice.2016.07.016

[3.3] A,Hameed, M. A. Gondal, Z. H. Yamani, Effect of transition metal doping on photocatalytic activity WO3 for water splitting under lase illumination: role of 3d- orbitals, Catalysis Communications, 5, 715–719 (2004). https://doi.org/10.1016/j.catcom.2004.09.002

[3.4] Li Zhang, Mingke Win, Wei Yu, Winghong Zhang, Hongyong Zie, Zhiguo Sun, Wian Shao, Zinglui Guo, Luhan Hao, Yongjun Zheng, Zhanhu Guo, Heterostructured TiO2/WO3 Nanocomposites for Photocatalytic Degradation of Toluene under Visible Light, Journal of The Electrochemical Society , 164, H1086–H1090 (2017). https://doi.org/10.1149/2.0881714jes

[3.5] Taeseok Choi, Jung-Sik Kim, Jung Hyeun Kim, Influence of alkoxide structures on formation of TiO2/WO3 heterojunctions for photocatalytic decomposition of organic compounds, Advanced Powder Technology, 27, 2061–2065 (2016). https://doi.org/10.1016/j.apt.2016.07.016

[3.6] Taeseok Choi, Jung-Sik Kim, Jung Hyeun Kim, Transparent nitrogen doped TiO 2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity, Advanced Powder Technology, 27, 347–353 (2016). https://doi.org/10.1016/j.apt.2016.01.005

[3.7] Wai Hong Lee, Chin Wei Lai, Sharifah Bee Abd Hamid, One-Step Formation of WO3- Loaded TiO2 Nanotubes Composite Film for High Photocatalytic Performance, Materials, 8, 2139–2153 (2015). https://doi.org/10.3390/ma8052139 .

[3.8] M. R. Bayati, F. Golestani-Fard, A. Z. Moshfegh, Visible photodecomposition of methylene blue over micro arc oxidized WO 3-loaded TiO2 nano-porous layers, Applied Catalysis A: General, 382, 322–331 (2010). https://doi.org/10.1016/j.apcata.2010.05.017

[3.9] E. Valova, J. Georgieva, S. Armyanov, S. Sotiropoulos, A. Hubin, K. Baert, M. Raes, Morphology, Structure and Photoelectrocatalytic Activity of TiO2/WO3 Coating Obtained by Pulsed Electrodeposition onto Stainless Steel, Journal of The Electrochemical Society, 157, D309–D315 (2010). https://doi.org/10.1149/1.3356001

[3.10] Fei Chang, Jie Wang, Jieru Luo, Junrong Sun, Baoqing Deng, Xuefeng Hu, Enhanced visible-light-driven photocatalytic performance of mesoporous W-Ti-SBA-15 prepared through a facile hydrothermal route, Colloids and Surfaces A: Physicochemical and Engineering Aspects , 499, 69–78 (2016). https://doi.org/10.1016/j.colsurfa.2016.04.013

[3.11] Zhengqing Cai, Xiaodi Hao, Xianbo Sun, Penghui Du, Wen Liu, Jie Fu, Highly active WO3@anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation: Mechanism insight and toxicity assessment, Water Research, 162, 369–382 (2019). https://doi.org/10.1016/j.watres.2019.06.017

[3.12] Roe Hoan Yoon, Talat Salman, Gabrielle Donnay, Predicting points of zero charge of oxides and hydroxides, Journal of Colloid and Interface Science , 70, 483–493 (1979). https://doi.org/10.1016/0021-9797(79)90056-0

第 4 章参考文献

[4.1] María V. Zakharova, Freddy Kleitz, Frédéric-Georges Fontaine, Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica, Dalton Transactions, 46, 3864–3876 (2017). https://doi.org/10.1039/c7dt00035a

[4.2] Cristian D. Miranda M., Alfonso E. Ramírez S., Sonia Gaona Jurado, Carlos R. Vera, Superficial effects and catalytic activity of ZrO 2−SO42− as a function of the crystal structure, Journal of Molecular Catalysis A: Chemical , 398, 325–335 (2015). https://doi.org/10.1016/j.molcata.2014.12.015

[4.3] Wei-Jye Wang, Yu-Wen Chen, Alumina–aluminum borates as solid acid catalysts, Catalysis Letters, 10, 297–304 (1991). https://doi.org/10.1007/BF00772084

[4.4] J.A. Cecilia, C. García-Sancho, J.M. Mérida-Robles, J. Santamaría-González, A. Infantes-Molina, R. Moreno-Tost, P. Maireles-Torres, Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals, Journal of Sol-Gel Science and Technology, 83, 342–354 (2017). https://doi.org/10.1007/s10971-017- 4411-2

[4.5] Xin Hong, Yunhe Li, Chang Gao, Yonghua Zhao, Ke Tang, Adsorption removing various basic nitrogen compounds from model diesel over allochroic silica gel, Adsorption Science and Technology, 36, 1595–1611 (2018). https://doi.org/10.1177/0263617418798101

[4.6] Ahron Hwang, Sungtak Kim, Geunjae Kwak, Seok Ki Kim, Hae-Gu Park, Seok Chang Kang, Ki-Won Jun, Yong Tae Kim, T. Low temperature oligomerization of ethylene over Ni/Al-KIT-6 catalysts, Catalysis Letters, 147, 1303–1314 (2017). https://doi.org/10.1007/s10562-017-2036-2

[4.7] Alexandru Popa, Viorel Sasca, Orsina Verdes, Albert Oszko, Preparation and catalytic properties of cobalt salts of Keggin type heteropolyacids supported on mesoporous silica, Catalysis Today, 306, 233–242 (2018). https://doi.org/10.1016/j.cattod.2017.02.045

[4.8] Fazle Subhan, Sobia Aslam, Zifeng Yan, Zhen Liu, U. J. Etim, Abdul Wadood, Rooh Ullah, Confinement of mesopores within ZSM-5 and functionalization with Ni NPs for deep desulfurization, Chemical Engineering Journal, 354, 706–715 (2018). https://doi.org/10.1016/j.cej.2018.08.059

[4.9] Benjamin Umansky, Jozsef Engelhardt, W. Keith Hall, On the strength of solid acids, Journal of Catalysis, 127, 128–140 (1991). https://doi.org/10.1016/0021- 9517(91)90215-P

[4.10] R. Zhang, J. Jagiello, J. F. Hu, Z. -Q. Huang, J. A. Schwarz, A. Datye, Effect of WO3 loading on the surface acidity of WO 3/Al2O3 composite oxides, Applied Catalysis A: General, 84, 123–139 (1992). https://doi.org/10.1016/0926-860X(92)80111-O

[4.11] C. Lee, D. J. Parrillo, R. J. Gorte, W. E. Farneth, Relationship between differential heats of adsorption and Brønsted acid strengths of acidic zeolites: H-ZSM-5 and H- Mordenite, Journal of the American Chemical Society , 118, 3262–3268 (1996). https://doi.org/10.1021/ja953452y

[4.12] D. R. Brown, C. N. Rhodes, A new technique for measuring surface acidity by ammonia adsorption, Thermochimca Acta, 294, 33–37 (1997). https://doi.org/10.1016/S0040-6031(96)03139-5

[4.13] M. L. Occelli, S. Biz, A. Auroux, Effects of isomorphous substitution of Si with Ti and Zr in mesoporous silicates with the MCM-41 structure, Applied Catalysis A: General, 183, 231–239 (1999). https://doi.org/10.1016/S0926-860X(99)00059-9

[4.14] František Mikšík, Takahiko Miyazaki, Kyaw Thu, Adsorption isotherm modelling of water on nano-tailored mesoporous silica based on distribution function, Energies, 13, 4247 (2020). https://doi.org/10.3390/en13164247

[4.15] 蒸留・蒸気圧・気液平衡・物性推算、アントワン式、http://s- ohe.com/Antoine_Eq.htm、参照 2021.2.5.

[4.16] 古川淳二・三枝武夫・鶴田禎二・藤井弘保・川崎明裕・多々納俊雄、アルミナによるアセトアルデヒドの高重合、工業化学雑誌、62, 1926 –1929 (1959).

[4.17] 三枝武夫、アセトアルデヒドの重合、有機合成化学、19, 254 –260 (1961).

[4.18] Lis Sopyan, Mitsuru Watanabe, Sadao Murasawa, Kazuhito Hashimoto, Akira Fujishima, An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas- phase acetaldehyde degradation, Journal of Photochemistry and Photobiology A: Chemistry, 98, 79–86 (1996). https://doi.org/10.1016/1010-6030(96)04328-6

[4.19] Hongmei Hou, Hisashi Miyafuji, Shiro Saka, Photocatalytic activities and mechanism of the supercritically treated TiO2-activated carbon composites on decomposition of acetaldehyde, Journal of Materials Science, 41, 8295–8300 (2006). https://doi.org/10.1007/s10853-006-1009-4

[4.20] S. Inagaki, Y. Fukushima, Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16, Microporous and Mesoporous Materials , 21, 667–672 (1998). https://doi.org/10.1016/S1387-1811(98)00075-4

[4.21] Aki A. Hassanali, Sherwin J. Singer, Model for the water–amorphous silica interface: The undissociated surface, The Journal of Physical Chemistry B, 111, 11181–11193 (2007). https://doi.org/10.1021/jp062971s

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る