リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading

Makino, Yuki Hirooka, Yoshihiro Homma, Koki Kondo, Rintaro Liu, Tian-Sheng Tang, Liang Nakazaki, Tetsuya Xu, Zheng-Jin Shiraiwa, Tatsuhiko 京都大学 DOI:10.1080/1343943x.2021.1908152

2022

概要

Increasing the yield potential of rice (Oryza sativa) is the main objective of breeders and cultivators engaged in rice improvement programs. Erect panicle (EP) rice is generally high-yielding with panicles that remain non-curved until maturation. The aim of our study was to evaluate the association of agronomic traits with rice productivity in EP rice. Here, we used the recombinant inbred lines (RILs), crosses between Liaojing5 (erect panicle japonica type) and Wanlun422 (high-yielding indica type). The yield varied among the RILs, and the flag leaf length of EP RILs was negatively correlated with the yield; however, the correlation was not significant in the non-EP RILs. The flag leaf length of the EP RILs was also negatively correlated with biomass increase during the late ripening stage. This may reflect the canopy structure of the EP RILs with short flag leaves which had a larger leaf area index in the lower strata. Additionally, the chlorophyll content in the lower leaf significantly differed among the EP RILs with flag leaves of different lengths, resulting in a higher photosynthetic ability of the lower leaf of EP RILs with short flag leaves. In the present study, an EP line, which has the shortest flag leaf, showed a higher yield than Wanlun422 in both years. EP RILs with short flag leaves might show a higher canopy photosynthetic rate in the later ripening stage; therefore, this trait could be a potential phenotypic marker for achieving high yield of EP rice.

この論文で使われている画像

参考文献

Adachi, S., Nito, N., Kondo, M., Yamamoto, T., Arai-Sanoh, Y.,

Ando, T., Ookawa, T., Yano, M., & Hirasawa, T. (2011).

Identification of chromosomal regions controlling the leaf

photosynthetic rate in rice by using a progeny from japonica

and high-yielding indica varieties. Plant Production Science,

14(2), 118–127. https://doi.org/10.1626/pps.14.118

Bing, Y., Wei-Ya, X. U. E., Li-Jun, L. U. O., & Yong-Zhong, X. I. N. G.

(2006). QTL analysis for flag leaf characteristics and their

relationships with yield and yield traits in rice. Acta

Genetica Sinica, 33(9), 824–832. https://doi.org/10.1016/

S0379-4172(06)60116-9

Bolker, B. M., & Pacala, S. W. (1999). Spatial moment equations

for plant competition: Understanding spatial strategies and

the advantages of short dispersal. The American Naturalist,

153(6), 575–602. https://doi.org/10.1086/303199

Cui, K., Peng, S., Xing, Y., Yu, S., Xu, C., & Zhang, Q. (2003).

Molecular dissection of the genetic relationships of source,

sink and transport tissue with yield traits in rice. Theoretical

and Applied Genetics, 106(4), 649–658. https://doi.org/10.

1007/s00122-002-1113-z

Fei, C., Yu, J., Xu, Z., & Xu, Q. (2019). Erect panicle architecture

contributes to increased rice production through the

improvement of canopy structure. Molecular Breeding, 39

(9), 128. https://doi.org/10.1007/s11032-019-1037-9

Fukushima, A., Ohta, H., Kaji, R., Nakagomi, K., Yamaguchi, M., &

Xu, Z. (2011). Yielding ability and morphological traits of

erect panicle rice. Tohoku Journal of Crop Science, 54,

19–20. https://doi.org/10.20725/tjcs.54.0_19

Gu, J., Chen, Y., Zhang, H., Li, Z., Zhou, Q., Kong, Y. C., Liu, X.,

Wang, L., & Yang, J. (2017). Canopy light and nitrogen dis­

tributions are related to grain yield and nitrogen use effi­

ciency in rice. Field Crops Research, 206, 74–85. https://doi.

org/10.1016/j.fcr.2017.02.021

Hirooka, Y., Homma, K., & Shiraiwa, T. (2018a). Parameterization of

the vertical distribution of leaf area index (LAI) in rice (Oryza

sativa L.) using a plant canopy analyzer. Scientific Reports, 8(1),

6387. https://doi.org/10.1038/s41598-018-24369-0

Hirooka, Y., Homma, K., Shiraiwa, T., Makino, Y., Liu, T. S., Xu, Z.,

& Tang, L. (2018b). Yield and growth characteristics of erect

panicle type rice (Oryza sativa L.) cultivar, Shennong265

under various crop management practices in Western

Japan. Plant Production Science, 21(1), 1–7. https://doi.org/

10.1080/1343943X.2018.1426993

Horie, T., Shiraiwa, T., Homma, K., Katsura, K., Maeda, S., &

Yoshida, H. (2005). Can yields of lowland rice resume the

increases that they showed in the 1980s? Plant

Production Science, 8(3), 259–274. https://doi.org/10.

1626/pps.8.259

Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C.,

Li, J., & Fu, X. (2009). Natural variation at the DEP1 locus

enhances grain yield in rice. Nature Genetics, 41(4), 494.

https://doi.org/10.1038/ng.352

Jiang, L., Dai, T., Jiang, D., Cao, W., Gan, X., & Wei, S. (2004).

Characterizing physiological N-use efficiency as influenced

by nitrogen management in three rice cultivars. Field Crops

Research, 88(2–3), 239–250. https://doi.org/10.1016/j.fcr.

2004.01.023

Jin, F., Wang, H., Xu, H., Liu, T., Tang, L., Wang, X., Jiang, Y.,

Yang, L., Li, M., Sui, M., Lang, X., Xu, Z., & Chen, W. (2013).

Comparisons of plant-type characteristics and yield

components in filial generations of Indica× Japonica crosses

grown in different regions in China. Field Crops Research,

154, 110–118. https://doi.org/10.1016/j.fcr.2013.07.023

Kato, M., Kobayashi, K., Ogiso, E., & Yokoo, M. (2004).

Photosynthesis and dry-mater production during ripening

stage in a female-sterile line of rice. Plant Production Science,

7(2), 184–188. https://doi.org/10.1626/pps.7.184

Khush, G. S. (1995). Breaking the yield frontier of rice.

GeoJournal, 35(3), 329–332. https://doi.org/10.1007/

BF00989140

Kong, F. N., Wang, J. Y., Zou, J. C., Shi, L. X., De Jin, M., Xu, Z. J., &

Wang, B. (2007). Molecular tagging and mapping of the

erect panicle gene in rice. Molecular Breeding, 19(4),

297–304. https://doi.org/10.1007/s11032-006-9062-x

Li, J., Xin, Y., & Yuan, L. (2009). Hybrid rice technology develop­

ment: Ensuring China’s food security. In D. J. Spielman &

R. Pandya-Lorch (Eds.), Proven successes in agricultural devel­

opment: A technical compendium to millions fed.

International Food Policy Research Institute.

Maclean, J., Hardy, B., & Hettel, G. (2013). Rice Almanac: Source

Book for One of the Most Important Economic Activities on

Earth (4th ed.). IRRI, Los Baños.

Ohnishi, M., & Horie, T. (1999). A proxy analysis of nonstructural

carbohydrate in rice plant by using the gravimetric method.

Japanese Journal of Crop Science, 68(1), 126–136. https://doi.

org/10.1626/jcs.68.126

Oishi, A., Tanaka, Y., Xu, Z., & Shiraiwa, T. (2015).

Investigation of lines with high photosynthetic capacity

among a population derived from a cross between an

erect panicle rice and non erect panicle rice. Abstracts of

the 239th Meeting of the CSSJ. p. 87. https://doi.org/10.

14829/jcsproc.239.0_87

Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M.,

Zhong, X., Centro, G. S., Khush, G. S., & Cassman, K. G. (2004).

Rice yields decline with higher night temperature from glo­

bal warming. Proceedings of the National Academy of

Sciences, 101(27), 9971–9975. https://doi.org/10.1073/pnas.

0403720101

Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress

in ideotype breeding to increase rice yield potential. Field

Crops Research, 10, 8(1), 32–38. https://doi.org/10.1016/j.fcr.

2008.04.001

Qiao, Y., Piao, R., Shi, J., Lee, S. I., Jiang, W., Kim, B. K.,

Lee, J., Han, L., Ma, W., & Koh, H. J. (2011). Fine mapping

and candidate gene analysis of dense and erect panicle

3, DEP3, which confers high grain yield in rice (Oryza

sativa L.). Theoretical and Applied Genetics, 122(7),

1439–1449. https://doi.org/10.1007/s00122-011-1543-6

Saitoh, K., Yonetani, K., Murota, T., & Kuroda, T. (2002). Effects of

flag leaves and panicles on light interception and canopy

photosynthesis in high-yielding rice cultivars. Plant

Production Science, 5(4), 275–280. https://doi.org/10.1626/

pps.5.275

Sanchez-Bragado, R., Vicente, R., Molero, G., Serret, M. D.,

Maydup, M. L., & Araus, J. L. (2020). New avenues for

increasing yield and stability in C3 cereals: Exploring ear

photosynthesis. Current Opinion in Plant Biology, 56,

223–234. https://doi.org/10.1016/j.pbi.2020.01.001

Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H.,

Nishimura, A., Swapan, D., Ishiyama, K., Saito, T.,

Kobayashi, M., Khush, G. S., Kitano, H., & Matsuoka, M.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

10

Y. MAKINO ET AL.

(2002). A mutant gibberellin-synthesis gene in rice. Nature,

416(6882), 701–702. https://doi.org/10.1038/416701a

Seshu, D. V., & Cady, F. B. (1984). Response of rice to solar

radiation and temperature estimated from international

yield trials. Crop Science, 24(4), 649–654. https://doi.org/10.

2135/cropsci1984.0011183X002400040006x

Song, G., Xu, Z., & Yang, H. (2013). Effects of N rates on N uptake

and yield in erect panicle rice. Agricultural Sciences, 4(9), 499.

https://doi.org/10.4236/as.2013.49067

Spielmeyer, W., Ellis, M. H., & Chandler, P. M. (2002). Semidwarf

(sd-1), “green revolution” rice, contains a defective gibber­

ellin 20-oxidase gene. Proceedings of the National Academy

of Sciences, 99(13), 9043–9048. https://doi.org/10.1073/pnas.

132266399

Sun, H., Qian, Q., Wu, K., Luo, J., Wang, S., Zhang, C., Ma, Y.,

Liu, Q., Huang, X., Yuan, Q., Han, R., Zhao, M., Dong, G.,

Guo, L., Zhu, X., Gou, Z., Wang, W., Wu, Y., Lin, H., & Fu, X.

(2014). Heterotrimeric G proteins regulate nitrogen-use effi­

ciency in rice. Nature Genetics, 46(6), 652–656. https://doi.

org/10.1038/ng.2958

Takai, T., Adachi, S., Taguchi-Shiobara, F., Sanoh-Arai, Y.,

Iwasawa, N., Yoshinaga, S., Hirose, S., Taniguchi, Y.,

Yamanouchi, U., Wu, J., Matsumoto, T., Sugimoto, K.,

Kondo, K., Ikka, T., Ando, T., Kono, I., Ito, S., Shomura, A.,

Ookawa, T., Yano, M., . . . Yamamoto, T. (2013). A natural

variant of NAL1, selected in high-yield rice breeding pro­

grams, pleiotropically increases photosynthesis rate.

Scientific Reports, 3(1), 2149. https://doi.org/10.1038/

srep02149

Tang, L., Gao, H., Hirooka, Y., Homma, K., Nakazaki, T., Liu, T.,

Shiraiwa, T., & Xu, Z. (2017). Erect panicle super rice varieties

enhance yield by harvest index advantages in high nitrogen and

density conditions. Journal of Integrative Agriculture, 16(7),

1467–1473. https://doi.org/10.1016/S2095-3119(17)61667-8

Urairi, C., Tanaka, Y., Hirooka, Y., Homma, K., Xu, Z., &

Shiraiwa, T. (2016). Response of the leaf photosynthetic

rate to available nitrogen in erect panicle-type rice (Oryza

sativa L.) cultivar, Shennong265. Plant Production Science,

19(3), 420–426. https://doi.org/10.1080/1343943X.2016.

1149037

Wani, S. H., Sanghera, G. S., & Gosal, S. S. (2011). An efficient

and reproducible method for regeneration of whole

plants from mature seeds of a high yielding Indica rice

(Oryza sativa L.) variety PAU 201. New Biotechnology, 28(4),

418–422. https://doi.org/10.1016/j.nbt.2011.02.006

Xu, H., Zhao, M., Zhang, Q., Xu, Z., & Xu, Q. (2016). The DENSE

AND ERECT PANICLE 1 (DEP1) gene offering the potential in

the breeding of high-yielding rice. Breeding Science, 66(5),

659–667. https://doi.org/10.1270/jsbbs.16120

Xu, Q., Liu, T., Bi, W., Wang, Y., Xu, H., Tang, L., Sun, J., &

Xu, Z. (2015). Different effects of DEP1 on vascular

bundle-and panicle-related traits under indica and japo­

nica genetic backgrounds. Molecular Breeding, 35(8), 173.

https://doi.org/10.1007/s11032-015-0364-8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る