リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Consecutive and Effective Facial Masking Using Image-Based Bone Sensing for Remote Medicine Education」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Consecutive and Effective Facial Masking Using Image-Based Bone Sensing for Remote Medicine Education

Chen, Sinan Nakamura, Masahide Sekiguchi, Kenji 神戸大学

2022.10

概要

Unlike masking human faces from images, facial masking in real-time, frame by frame from a video stream, presents technical challenges related to various factors such as camera-to-human distance, head direction, and mosaic schemes. In many existing studies, expensive equipment and huge computational resources are strongly required, and it is not easy to effectively realize real-time facial masking with a simpler approach. This study aims to develop a secure streaming system to support remote medicine education and to quantitatively evaluate consecutive and effective facial masking using image-based bone sensing. Our key idea is to use the facial feature of bone sensing instead of general face recognition techniques to perform facial masking from the video stream. We use a general-purpose computer and a USB fixed-point camera to implement the eye line mosaic and face mosaic. We quantitatively evaluate the results of facial masking at different distances and human head orientations using bone sensing technology and a depth camera. we compare the results of a similar approach for face recognition with those of bone sensing. As the main results, consecutive face masking using bone sensing is unaffected by distance and head orientation, and the variation width of the mosaic area is stable within around 30% of the target area. However, about three-fourths of the results using conventional face recognition were unable to mask their faces consecutively.

この論文で使われている画像

参考文献

1. Ashokka, B.; Ong, S.Y.; Tay, K.H.; Loh, N.H.W.; Gee, C.F.; Samarasekera, D.D. Coordinated responses of academic medical centres to pandemics: Sustaining medical education during COVID-19. Med. Teach. 2020, 42, 762–771. [CrossRef] [PubMed]

2. Serhan, D. Transitioning from Face-to-Face to Remote Learning: Students’ Attitudes and Perceptions of Using Zoom during COVID-19 Pandemic. Int. J. Technol. Educ. Sci. 2020, 4, 335–342. [CrossRef]

3. Chu, M.; Dalwadi, S.; Profit, R.; Searle, B.; Williams, H. How Should Medical Education Support Increasing Telemedicine Use Following COVID-19? An Asian Perspective Focused on Teleconsultation. Int. J. Digit. Health 2022, 2, 1–6 . [CrossRef]

4. Jacob, I.J.; Darney, P.E. Design of deep learning algorithm for IoT application by image based recognition. J. ISMAC 2021, 3, 276–290. [CrossRef]

5. Hirayama, K.; Chen, S.; Saiki, S.; Nakamura, M. Toward Capturing Scientific Evidence in Elderly Care: Efficient Extraction of Changing Facial Feature Points. Sensors 2021, 21, 6726. [CrossRef] [PubMed]

6. Wang, H.; Yan, W.Q. Face Detection and Recognition From Distance Based on Deep Learning. In Aiding Forensic Investigation through Deep Learning and Machine Learning Frameworks; IGI Global: PA, USA, 2022; pp. 144–160. [CrossRef]

7. Gouiffès, M.; Caye, V. The Vera Icona Installation and Performance: A Reflection on Face Surveillance in Contemporary Society. Leonardo 2022, 55, 439–444. [CrossRef]

8. Petrangeli, S.; Pauwels, D.; Van Der Hooft, J.; Žiak, M.; Slowack, J.; Wauters, T.; De Turck, F. A scalable WebRTC-based framework for remote video collaboration applications. Multimed. Tools Appl. 2019, 78, 7419–7452. [CrossRef]

9. Divya, R.; Peter, J.D. Smart healthcare system-a brain-like computing approach for analyzing the performance of detectron2 and PoseNet models for anomalous action detection in aged people with movement impairments. Complex Intell. Syst. 2022, 8, 3021–3040. [CrossRef]

10. Zhang, F.; Yang, T.; Liu, L.; Liang, B.; Bai, Y.; Li, J. Image-only real-time incremental UAV image mosaic for multi-strip flight. IEEE Trans. Multimed. 2020, 23, 1410–1425. [CrossRef]

11. Hasby, M.A.; Putrada, A.G.; Dawani, F. The Quality Comparison of WebRTC and SIP Audio and Video Communications with PSNR. Indones. J. Comput.-(Indo-JC) 2021, 6, 73–84.

12. Murley, P.; Ma, Z.; Mason, J.; Bailey, M.; Kharraz, A. WebSocket adoption and the landscape of the real-time web. In Proceedings of the Web Conference 2021, Virtually, 19–23 April 2021; pp. 1192–1203.

13. Damayanti, F.U. Research of Web Real-Time Communication-the Unified Communication Platform using Node. js Signaling Server. J. Appl. Inf. Commun. Technol. 2018, 5, 53–61.

14. Jannes, K.; Lagaisse, B.; Joosen, W. The web browser as distributed application server: Towards decentralized web applications in the edge. In Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking, Dresden, Germany, 25 March 2019; pp. 7–11.

15. Zhu, B.; Fang, H.; Sui, Y.; Li, L. Deepfakes for medical video de-identification: Privacy protection and diagnostic information preservation. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, 7–8 February 2020; pp. 414–420.

16. Qiu, Y.; Niu, Z.; Song, B.; Ma, T.; Al-Dhelaan, A.; Al-Dhelaan, M. A Novel Generative Model for Face Privacy Protection in Video Surveillance with Utility Maintenance. Appl. Sci. 2022, 12, 6962. [CrossRef]

17. Kim, J.; Park, N. A Face Image Virtualization Mechanism for Privacy Intrusion Prevention in Healthcare Video Surveillance Systems. Symmetry 2020, 12, 891. [CrossRef]

18. Kim, D.; Park, S. A study on face masking scheme in video surveillance system. In Proceedings of the 2018 IEEE Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018; pp. 871–873.

19. Rajput, A.S.; Raman, B.; Imran, J. Privacy-preserving human action recognition as a remote cloud service using RGB-D sensors and deep CNN. Expert Syst. Appl. 2020, 152, 113349. [CrossRef]

20. Chen, S.; Saiki, S.; Nakamura, M. Nonintrusive fine-grained home care monitoring: Characterizing quality of in-home postural changes using bone-based human sensing. Sensors 2020, 20, 5894. [CrossRef] [PubMed]

21. Chen, S.; Nakamura, M. Designing an Elderly Virtual Caregiver Using Dialogue Agents and WebRTC. In Proceedings of the 2021 4th IEEE International Conference on Signal Processing and Information Security (ICSPIS), Virtually, 24–25 November 2021; pp. 53–56.

22. Mendez, K.M.; Pritchard, L.; Reinke, S.N.; Broadhurst, D.I. Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics 2019, 15, 125. [CrossRef]

23. Khan, M.; Chakraborty, S.; Astya, R.; Khepra, S. Face detection and recognition using OpenCV. In Proceedings of the 2019 IEEE International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 116–119.

24. Andriyanov, N.; Khasanshin, I.; Utkin, D.; Gataullin, T.; Ignar, S.; Shumaev, V.; Soloviev, V. Intelligent system for estimation of the spatial position of apples based on YOLOv3 and real sense depth camera D415. Symmetry 2022, 14, 148. [CrossRef]

25. Tadic, V.; Odry, A.; Kecskes, I.; Burkus, E.; Kiraly, Z.; Odry, P. Application of Intel realsense cameras for depth image generation in robotics. WSEAS Transac. Comput. 2019, 18, 2224–2872.

26. Klym, H.; Vasylchyshyn, I. Face Detection Using an Implementation Running in a Web Browser. In Proceedings of the 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE), Online Conference, Poland, 16–19 September 2020; pp. 1–4.

27. Hao, W.; Zhili, S. Improved mosaic: Algorithms for more complex images. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1684, p. 012094.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る