リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatial Analysis of Urban Wetland Ecosystem Service Value Changes in Muthurajawela Marsh and Negombo Lagoon, Sri Lanka」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatial Analysis of Urban Wetland Ecosystem Service Value Changes in Muthurajawela Marsh and Negombo Lagoon, Sri Lanka

ATHUKORALA ARACHCHIGE SUMUDU DARSHANA 筑波大学 DOI:10.15068/0002005478

2022.11.18

概要

The Muthurajawela Marsh and Negombo Lagoon (MMNL), the biggest coastal saltwater peat bog in Sri Lanka, is located in the Colombo Metropolitan Region (CMR), the country's capital and the location of the MMNL. During the past two decades, the CMR has grown very rapidly; the MMNL's natural environment and the combined wetland ecosystem services they provided (flood attenuation, industrial wastewater treatment, agriculture production, and support to downstream fisheries) are now in danger. Therefore, the state of the MMNL and the trajectory of Land Use/Cover (LUC) change should be evaluated urgently before more irreparable ecological damage occurs.

 The main objectives of this study are to project future LUC and wetland ecosystem services value (ESV) changes in the MMNL and to explain their implications for future wetland landscape conservation and urban planning. Geospatial data, tools, and techniques such as Remote Sensing (RS), socio-economic and filed data, Geographic Information System (GIS), the Land Change Modeler (LCM), and ESV coefficients have been used to (1) calculate the LUC and ESV changes from 1997 to 2017; (2) examine the driving force of urbanization and spatial drivers for LUC change and (3) predict the future LUC and ESV changes from 2017 to 2030 based on two scenarios. Scenario 1 is Business As Usual (BAU), based on the continued expansion of LUC pattern changes from 2007 to 2017 in all areas, including marshland, mangrove, and protected areas. Scenario 2 is the Ecological Protection scenario (EP), based on the trends of LUC changes from 2007 to 2017, but with the complete protection of two protected areas and with a 20% reduction in the current urban pressure on the MMNL.

 The results revealed that the spatial and socio-economic elements of the rapid urbanization of the MMNL had been the main driver of the transformation of its natural environment over the past 20 years. This is indicated by a substantial expansion of settlements (+70%) and a considerable decrease of marshland and mangrove cover (-28% and -42%, respectively). The MMNL's urbanization has been driven by interrelated socio-economic and biophysical factors. The spatial drivers that impact LUC change patterns include distance to road, distance to growth node, distance to lagoon, distance to the protected area, elevation, and slope.

 The LUC changes between 1997 to 2017 considerably impaired the total ESV of the MMNL. The results revealed that from 1997 to 2017, the overall ESV of the MMNL has declined by United States Dollar (USD) 8.96 million/year (Sri Lankan Rupees (LKR) 1642 million/year), or about 33%, primarily due to the loss of mangrove and marshland from urban (settlement) expansion. Under the BAU scenario, it would continue to decrease by about USD 6.01 million/year (LKR 1101 million/year), or about 34%, in 2030. However, under the EP scenario, the decrease would only be about USD 4.79 million/year (LKR 878 million/year) or about 27% Among the ecosystem services of the MMNL that have been, and would be, affected the most are flood attenuation, industrial wastewater treatment, agriculture production, and support to downstream fisheries (fish breeding and nursery). Overall, between the two scenarios, the EP scenario is the more desirable scenario for the sustainability of the MMNL. The urban wetland environment and the wetland ecosystem services of the MMNL are immensely significant in accomplishing many vital roles to the city drawlers in the CMR; hence, they should be considered by local government planners and decision-makers.

 From the scientific approach, this study has provided insight into the past and future wetland landscape and ESV change in the MMNL, and research methods and techniques related to LUC change modeling and the monitoring of ESV change. Notably, this study has used the LCM to calibrate the LUC change model, measured the LUC modeling accuracy, and investigated the ESV changes in the Grama Niladhari (GN) division level in the context of landscape conservation and urban planning.

この論文で使われている画像

参考文献

Abeywardene, J., Alwis, R. de, Jayasena, A., Jayaweera, S., & Sanmugam, and T. (1994). Export processing zones in Sri Lanka: Economic impact and social issues. Centre for Women’s Research, Sri Lanka.

Ansari, A., & Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands – A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research, 7(1), 64–70.

Assefa, W. W., Eneyew, B. G., & Wondie, A. (2021). The impacts of land-use and land-cover change on wetland ecosystem service values in peri-urban and urban area of Bahir Dar City, Upper Blue Nile Basin, Northwestern Ethiopia. Ecological Processes, 10(1), 1-18.

Athukorala, D., Estoque, R. C., Murayama, Y., & Matsushita, B. (2021). Impacts of urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sensing, 13(2), 316.

Athukorala, D., & Murayama, Y. (2020). Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana. Sustainability, 12(19), 7953.

Bambaradeniya, C. N., Ekanayake, S. P., Kekulandala, L. D. C. B., Samarawickrama, V. A. P., Ratnayake, N. D., & Fernando, R. H. S. S. (2002). An assessment of the status of biodiversity in the Muthurajawela wetland sanctuary. Occasional Papers of IUCN Sri Lanka, 3, 48.

Central Environment Authority, Sri Lanka. Available at: http://www.cea.lk/web/?option=com_content&view=article&layout=edit&id=1155 (Accessed: 14 June 2021).

Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Wu, Q. and Huang, K., (2020). Global projections of future urban land expansion under shared socioeconomic pathways. Nature communications, 11(1), pp.1-12.

Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., and Belt, M.V.D., (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), pp.253-260

Costanza, R., De Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S. and Turner, R.K., (2014). Changes in the global value of ecosystem services. Global environmental change, 26, pp.152-158.

Costanza, R.; Kubiszewski, I.; Cork, S.; Atkins, P. W. B. W. B.; Bean, A.; Diamond, A.; Grigg, N.; Korb, W.; Logg-Scarvell, J.; Navis, and R.; Patrick, K., (2015). Scenarios for Australia in 2050. Journal of. Future. Studies, 19, 49–76.

Costanza, R., De Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S. and Grasso, M., (2017). Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosystem services, 28, pp.1-16

Dai, X., Wang, L., Huang, C., Fang, L., Wang, S., & Wang, L. (2020). Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecological Indicators, 115, 106394.

DasGupta, R., Hashimoto, S., Okuro, T., & Basu, M. (2019). Scenario-based land change modelling in the Indian Sundarban delta: an exploratory analysis of plausible alternative regional futures. Sustainability Science, 14(1), 221-240.

Department of Census and Statistics-Sri Lanka. Available at: http://www.statistics.gov.lk/ (Accessed: 3 May 2020).

Department of Meteorology, Sri Lanka. Available at: https://www.meteo.gov.lk/index.php?lang=en (Accessed: 15 June 2021).

Eastman, J. R., & Toledano, J. (2018). A short presentation of the Land Change Modeler (LCM). In Geomatic approaches for modeling land change scenarios (pp. 499-505). Springer, Cham.

Emerton, L., & Kekulandala, B. (2003). Assessment of the Economic Value of Muthurajawela Wetland. IUCN—The World Conservation Union, Sri Lanka Country Office and Regional Environmental Economics Programme Asia, Colombo.

Environmental Profile of Muthurajawela and Negombo Lagoon (1991). Greater Colombo Economic Commision, Euroconsult, The Netherlands.

Estoque, R.C., Gomi, K., Togawa, T., Ooba, M., Hijioka, Y., Akiyama, C.M., Nakamura, S., Yoshioka, A. and Kuroda, K., (2019). Scenario-based land abandonment projections: Method, application and implications. Science of the Total Environment, 692, pp.903-916.

Estoque, R.C., Ooba, M., Avitabile, V., Hijioka, Y., DasGupta, R., Togawa, T. and Murayama, Y., (2019). The future of Southeast Asia’s forests. Nature communications, 10(1), pp.1-12.

Estoque, R. C., and Murayama, Y. (2012). Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: a scenario-based analysis. Applied Geography, 35(1-2), 316-326.

Estoque, R. C., and Murayama, Y. (2013). Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape and urban planning, 116, 60-72.

Estoque, R. C., and Murayama, Y. (2014). Measuring sustainability based upon various perspectives: a case study of a hill station in Southeast Asia. Ambio, 43(7), 943-956.

Estoque, R. C., and Murayama, Y. (2016). Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landscape Ecology, 31(7), 1481-1507.

Ghermandi, A., Sheela, A. M., and Justus, J. (2016). Integrating similarity analysis and ecosystem service value transfer: Results from a tropical coastal wetland in India. Ecosystem services, 22, 73-82.

Ghosh, S., and Das, A. (2020). Wetland conversion risk assessment of East Kolkata Wetland: A Ramsar site using random forest and support vector machine model. Journal of Cleaner Production, 275, 123475.

He, Y., Wang, W., Chen, Y., and Yan, H. (2021). Assessing spatio-temporal patterns and driving force of ecosystem service value in the main urban area of Guangzhou. Scientific Reports, 11(1), 1-18.

Hogg, C. L. (2011). Sri Lanka : Prospects for Reform and Reconciliation, Available at: http://www.adb.org/documents/books/ado/2011/ado2011-sri.pdf. Ramsar Homepage. Available at: https://www.ramsar.org/ (Accessed: 7 September 2018).

Hou, H., Estoque, R. C., and Murayama, Y. (2016). Spatiotemporal analysis of urban growth in three African capital cities: A grid-cell-based analysis using remote sensing data. Journal of African Earth Sciences, 123, 381-391.

Huang, Q., Zhao, X., He, C., Yin, D., and Meng, S. (2019). Impacts of urban expansion on wetland ecosystem services in the context of hosting the Winter Olympics: a scenario simulation in the Guanting Reservoir Basin, China. Regional Environmental Change, 19(8), 2365-2379. Eastman, J. R. (2016). TerrSet geospatial monitoring and modeling system. Clark University: Worcester, MA, USA, 345-389.

Jayathilake, M. B., and Chandrasekara, W. U. (2015). Variation of avifaunal diversity in relation to land- use modifications around a tropical estuary, the Negombo estuary in Sri Lanka. Journal of Asia- Pacific Biodiversity, 8(1), 72-82.

Johnson, B. A., Estoque, R. C., Li, X., Kumar, P., Dasgupta, R., Avtar, R., and Magcale-Macandog, D. B. (2021). High-resolution urban change modeling and flood exposure estimation at a national scale using open geospatial data: A case study of the Philippines. Computers, Environment and Urban Systems, 90, 101704.

Joy, N. M., and Paul, S. K. (2021). Analysis of the Economic Value and Status of the Ecosystem Services Provided by the Ashtamudi Wetland Region, a Ramsar Site in Kerala. Journal of the Indian Society of Remote Sensing, 49(4), 897-912.

Kelegama, S., and Corea, G. (2004), Economic Policy in Sri Lanka: Issues and Debates. SAGE Publications. Available at: https://books.google.co.jp/books?id=vTOJiGQ2mLIC.

Kharazmi, R., Tavili, A., Rahdari, M. R., Chaban, L., Panidi, E., and Rodrigo-Comino, J. (2018). Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environmental monitoring and assessment, 190(6), 1-23.

Kubiszewski, I., Costanza, R., Anderson, S., and Sutton, P. (2017). The future value of ecosystem services: Global scenarios and national implications. Ecosystem Services, 26, 289–301.

Mas, J. F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94-111.

Muthurajawela marsh and negombo lagoon: conservation master plan, (1994). Central Environmental Authority, Sri Lanka.

National Wetland Directory of Sri Lanka (2006). The Central Environmental Authority Colombo, Sri Lanka.

O’Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., van Ruijven, B.J., van Vuuren, D.P., Birkmann, J., Kok, K., Levy, M., and Solecki, W., (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global environmental change, 42, pp.169-180.

Peng, K., Jiang, W., Deng, Y., Liu, Y., Wu, Z., and Chen, Z. (2020). Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecological Indicators, 117, 106671.

Pontius, R.G., Boersma, W., Castella, J.C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K. and Koomen, E., Lippitt, C.D., McConnell, W., Sood, A.M., Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T.N., Veldkamp, A.T., and Verburg, P.H., (2008). Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42(1), pp.11-37.

Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B. L.; Dietrich, J. P.; Doelmann, J. C.; Gusti, M.; Hasegawa, T.; Kyle, P.; Obersteiner, M.; Tabeau, A.; Takahashi, K.; Valin, H.; Waldhoff, S.; Weindl, I.; Wise, M.; Kriegler, E.; Lotze-Campen, H.; Fricko, O.; Riahi, K.; and Vuuren, D. P. va. (2017). Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331-345.

Riahi, K.; van Vuuren, D. P.; Kriegler, E.; Edmonds, J.; O’Neill, B. C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; Lutz, W.; Popp, A.; Cuaresma, J. C.; KC, S.; Leimbach, M.; Jiang, L.; Kram, T.; Rao, S.; Emmerling, J.; Ebi, K.; Hasegawa, T.; Havlik, P.; Humpenöder, F.; Da Silva, L. A.; Smith, S.; Stehfest, E.; Bosetti, V.; Eom, J.; Gernaat, D.; Masui, T.; Rogelj, J.; Strefler, J.; Drouet, L.; Krey, V.; Luderer, G.; Harmsen, M.; Takahashi, K.; Baumstark, L.; Doelman, J. C.; Kainuma, M.; Klimont, Z.; Marangoni, G.; Lotze-Campen, H.; Obersteiner, M.; Tabeau, A.; and Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global environmental change, 42, 153-168.

Sinclair, M., Sagar, M. V., Knudsen, C., Sabu, J., and Ghermandi, A. (2021). Economic appraisal of ecosystem services and restoration scenarios in a tropical coastal Ramsar wetland in India. Ecosystem Services, 47, 101236.

Su, S., Xiao, R., Jiang, Z., and Zhang, Y. (2012). Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Applied Geography, 34, 295- 305.

Subasinghe, S., Estoque, R. C., and Murayama, Y. (2016). Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka. ISPRS international journal of geo-information, 5(11), 197.

Sun, X., Crittenden, J. C., Li, F., Lu, Z., and Dou, X. (2018). Urban expansion simulation and the spatio- temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Science of the Total Environment, 622, 974-987.

Sustainable Development Goals. Available at: https://sdgs.un.org/goals (Accessed: 23 September 2021).

Swetnam, R. D.; Fisher, B.; Mbilinyi, B. P.; Munishi, P. K. T.; Willcock, S.; Ricketts, T.; Mwakalila, S.; Balmford, A.; Burgess, N. D.; Marshall, A. R.; and Lewis, S. L. (2011). Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. Journal of environmental management, 92(3), 563-574.

Tong, C., Feagin, R. A., Lu, J., Zhang, X., Zhu, X., Wang, W., and He, W. (2007). Ecosystem service values and restoration in the urban Sanyang wetland of Wenzhou, China. Ecological engineering, 29(3), 249-258.

Wu, W. T., Zhou, Y. X., and Tian, B. (2017). Coastal wetlands facing climate change and anthropogenic activities: A remote sensing analysis and modelling application. Ocean & Coastal Management, 138, 1-10.

Yirsaw, E., Wu, W., Shi, X., Temesgen, H., and Bekele, B. (2017). Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability, 9(7), 1204.

Zhang, X., Estoque, R. C., and Murayama, Y. (2017). An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable cities and society, 32, 557-568.

Zhang, Z., Hu, B., Jiang, W., and Qiu, H. (2021). Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecological Indicators, 127, 107764.

Zhou, D., Tian, Y., and Jiang, G. (2018). Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China. Ecological indicators, 95, 152-164.

Zubair, O. A., Ji, W., and Weilert, T. E. (2017). Modeling the impact of urban landscape change on urban wetlands using similarity weighted instance-based machine learning and Markov model. Sustainability, 9(12), 2223.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る