リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「PML-RARαはMED1との結合を介して全トランス型レチノイン酸依存性の転写活性化を誘導する」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

PML-RARαはMED1との結合を介して全トランス型レチノイン酸依存性の転写活性化を誘導する

Fukuoka, Tomoya 福岡, 知也 フクオカ, トモヤ 神戸大学

2021.03.25

概要

Transcriptional activation by PML–RARα, an acute promyelocytic leukemia- related oncofusion protein, requires pharmacological concentrations of all-trans retinoic acid (ATRA). However, the mechanism by which the liganded PML– RARα complex leads to the formation of the preinitiation complex has been unidentified. Here we demonstrate that the Mediator subunit MED1 plays an important role in the ATRA-dependent activation of the PML–RARα-bound promoter. Luciferase reporter assays showed that PML–RARα induced significant transcription at pharmacological doses (1 μM) of ATRA; however, this was submaximal and equivalent to the level of transcription driven by intact RARα at physiological doses (1 nM) of ATRA. Transcription depended upon the interaction of PML–RARα with the two LxxLL nuclear receptor recognition motifs of MED1, and LxxLL→LxxAA mutations led to minimal transcription.
Mechanistically, MED1 interacted ATRA-dependently with the RARα portion of PML–RARα through the two LxxLL motifs of MED1. These results suggest that PML–RARα initiates ATRA-induced transcription through its interaction with MED1.

Keywords: PML–RARα; transcriptional activation; Mediator; MED1; LxxLL nuclear receptor recognition motifs

この論文で使われている画像

参考文献

[1] Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV, Dmitrovsky E, Evans RM. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell. 1991;66(4):663–674.

[2] de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML- RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66(4):675–684.

[3] Licht JD. Acute promyelocytic leukemia--weapons of mass differentiation. N Engl J Med. 2009 360(9):928–930.

[4] Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F, Rochette-Egly C, Gaube MP, Chambon P, Pelicci PG. Genomic variability and alternative splicing generate multiple PML/RARα transcripts that encode aberrant PML proteins and PML/RARα isoforms in acute promyelocytic leukaemia. EMBO J. 1992;11(4):1397–1407.

[5] van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, Gottardi E, Rambaldi A, Dotti G, Griesinger F, Parreira A, Gameiro P, Diáz MG, Malec M, Langerak AW, San Miguel JF, Biondi A. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–1928.

[6] Benedetti L, Levin AA, Scicchitano BM, Grignani F, Allenby G, Diverio D, Lo Coco F, Avvisati G, Ruthardt M, Adamo S, Pelicci PG, Nervi C. Characterization of the retinoid binding properties of the major fusion products present in acute promyelocytic leukemia cells. Blood. 1997;90(3):1175–1185.

[7] de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010;10(11):775–783.

[8] de Thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017 32(5):552–560.

[9] Saeed S, Logie C, Stunnenberg HG, Martens JH. Genome-wide functions of PML- RARα in acute promyelocytic leukaemia. Br J Cancer. 2011;104(4):554–558.

[10] Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998;391(6669):811– 814.

[11] Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature. 1998;391(6669):815–818.

[12] Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG. PML-RARα/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–185.

[13] Ablain J, Leiva M, Peres L, Fonsart J, Anthony E, de Thé H. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies. J Exp Med. 2013;210(4):647–853.

[14] Kornberg RD. Mediator and the mechanism of transcriptional activation. Trends Biochem Sci. 2005;30(5):235–239.

[15] Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet. 2010;11(11):761–772.

[16] Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription.Nat Rev Mol Cell Biol. 2015;16(3):155–166.

[17] Chen W, Roeder RG. Mediator-dependent nuclear receptor function. Semin Cell Dev Biol. 2011;22(7):749–758.

[18] Ito M, Roeder RG. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function.Trends Endocrinol Metab. 2001;12(3):127–134.

[19] Urahama N, Ito M, Sada A, Yakushijin K, Yamamoto K, Okamura A, Minagawa K, Hato A, Chihara K, Roeder RG, Matsui T. The role of transcriptional coactivator TRAP220 in myelomonocytic differentiation. Genes Cells. 2005;10(12):1127–1137.

[20] Ito M, Yuan CX, Okano HJ, Darnell RB, Roeder RG. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol Cell. 2000;5(4):683–693.

[21] Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65(7):1255–1266.

[22] Shao W, Rosenauer A, Mann K, Chang CP, Rachez C, Freedman LP, Miller WH Jr.Ligand-inducible interaction of the DRIP/TRAP coactivator complex with retinoid receptors in retinoic acid-sensitive and -resistant acute promyelocytic leukemia cells. Blood. 2000;96(6):2233–2239.

[23] Jiang P, Hu Q, Ito M, Meyer S, Waltz S, Khan S, Roeder RG, Zhang X. Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation. Proc Natl Acad Sci USA. 2010;107(15):6765–6770.

[24] Kim JH, Yang CK, Heo K, Roeder RG, An W, Stallcup MR. CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol Cell. 2008;31(4):510–519.

[25] Mizuta S, Minami T, Fujita H, Kaminaga C, Matsui K, Ishino R, Fujita A, Oda K, Kawai A, Hasegawa N, Urahama N, Roeder RG, Ito M. CCAR1/CoCoA pair-mediated recruitment of the Mediator defines a novel pathway for GATA1 function. Genes Cells. 2014;19(1):28–51

[26] Sumitomo A, Ishino R, Urahama N, Inoue K, Yonezawa K, Hasegawa N, Horie O, Matsuoka H, Kondo T, Roeder RG, Ito M. The transcriptional mediator subunit MED1/TRAP220 in stromal cells is involved in hematopoietic stem/progenitor cell support through osteopontin expression. Mol Cell Biol. 2010;30(20):4818–4827.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る