リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Big-Volume SliceGAN for Improving a Synthetic 3D Microstructure Image of Additive-Manufactured TYPE 316L Steel」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Big-Volume SliceGAN for Improving a Synthetic 3D Microstructure Image of Additive-Manufactured TYPE 316L Steel

Sugiura, Keiya 大阪大学

2023.04.29

概要

The reconstruction of three-dimensional (3D) microstructures can enhance our understanding of the properties of a material. Traditionally, serial sectioning [1,2] and tomography [3] have been used to generate 3D microstructure images. However, these
methods are time-consuming and require specialized equipment. Recently, Kench and
Cooper [4] introduced a new approach for efficient 3D microstructure reconstruction using
a generative adversarial network (GAN) called SliceGAN. There are two primary types of
image generation algorithms: adversarial generation network (GAN) [5] and variational autoencoder [6]. SliceGAN produces a synthetic 3D image from one or three two-dimensional
(2D) images for isotropic and anisotropic microstructures, respectively.
SliceGAN consists of three components: a 3D image generator (3D generator), a critic
(similar to a discriminator in conventional GAN [5]), and a slicer. The 3D generator creates
a 3D image from noise (latent variables), which is then sliced into three perpendicular
planes by the slicer. The critic compares the sliced images with 2D images cropped from
an original microstructure image, and updates the weight coefficient in the transpose
convolution matrix of the 3D generator accordingly. SliceGAN runs on a high-performance
graphics processing unit in Pytorch frame and GPGPU mode.
In the original SliceGAN architecture proposed by Kench and Cooper [4], 64 sets of
latent variables in the format of 4 × 4 × 4 (voxel) were used. These latent variables were
processed by a transpose convolution with five layers, resulting in a 3D image with dimensions of 64 × 64 × 64 voxels and three channels. The 2D images sliced from the generated
3D image were compared with 2D images cropped from the original image using the critic
of Wasserstein GAN with Gradient Penalty (WGAN-GP) [7]. The weight coefficient of the
3D generator was then updated based on the result. ...

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Zaefferer, S.; Wright, S.I.; Raabe, D. Three-dimensional orientation microscopy in a focused ion beam-scanning microscope: A

new dimension of microstructure characterization. Met. Mater. Trans. 2008, 39a, 374–389. [CrossRef]

Adachi, Y.; Sato, N.; Ojima, M.; Nakayama, M.; Wang, Y.T. Development of fully automated serial-sectioning 3D microscope and

topological approach to pearlite and dual-phase microstructure in steels. In Proceedings of the First International Conference on 3D

Materials Science at Seven Springs; Springer: Philadelphia, PA, USA, 2012.

Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Plessis, A.D.; Stock, S.R.

X-ray computed tomography. Nat. Rev. Methods Prim. 2021, 1, 18. [CrossRef]

Kench, S.; Cooper, S.J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial

network-based dimensionality expansion. Nat. Mach. Intell. 2021, 3, 299–305. [CrossRef]

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Adv. Neural Inf. Process. Syst. 2014, 27, 2672. [CrossRef]

Kingma, D.P.; Welling, M. An introduction to variational autoencoders. FNT Mach. Learn. 2019, 12, 307–392. [CrossRef]

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. arXiv 2017,

arXiv:1704.00028.

Sugiura, K.; Ogawa, T.; Adachi, Y. Hourly work of 3D microstructural visualization of dual phase steels by SliceGAN. Adv. Theory

Simul. 2022, 5, 2200132. [CrossRef]

Sun, S.-H.; Ishimoto, T.; Hagihara, K.; Tsutsumi, Y.; Hanawa, T.; Nakano, T. Excellent mechanical and corrosion properties of

austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Scr. Mater. 2019, 159,

89–93. [CrossRef]

Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis. In Forecasting and Control, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 1994.

Heideman, M.T.; Johnson, D.H.; Burrus, C.S. Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 1985, 34,

265–277. [CrossRef]

Ishimoto, T.; Hagihara, K.; Hisamoto, K.; Sun, S.-H.; Nakano, T. Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al

alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus. Scr. Mater.

2017, 132, 34–38. [CrossRef]

Sun, S.-H.; Hagihara, K.; Nakano, T. Effect of scanning strategy on texture formation in Ni-25 at%Mo alloys fabricated by selective

laser melting. Mater. Des. 2018, 140, 307–316. [CrossRef]

Hagihara, K.; Nakano, T.; Suzuki, M.; Ishimoto, T.; Sun, S.H. Successful additive manufacturing of MoSi2 including crystallographic texture and shape control. J. Alloys Compd. 2017, 696, 67–72. [CrossRef]

Nagase, T.; Hori, T.; Todai, M.; Sun, S.-H.; Nakano, T. Additive manufacturing of dense components in beta-titanium alloys with

crystallographic texture from a mixture of pure metallic element powders. Mater. Des. 2019, 173, 107771. [CrossRef]

Wang, Z.L.; Ogawa, T.; Adachi, Y. Property predictions for dual-phase steels using persistent homology and machine learning.

Adv. Theory Simul. 2020, 3, 1900227. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る