リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Weighted minimum feedback vertex sets and implementation in human cancer genes detection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Weighted minimum feedback vertex sets and implementation in human cancer genes detection

Li, Ruiming Lin, Chun-Yu Guo, Weifeng Akutsu, Tatsuya 京都大学 DOI:10.1186/s12859-021-04062-2

2021

概要

[Background] Recently, many computational methods have been proposed to predict cancer genes. One typical kind of method is to find the differentially expressed genes between tumour and normal samples. However, there are also some genes, for example, ‘dark’ genes, that play important roles at the network level but are difficult to find by traditional differential gene expression analysis. In addition, network controllability methods, such as the minimum feedback vertex set (MFVS) method, have been used frequently in cancer gene prediction. However, the weights of vertices (or genes) are ignored in the traditional MFVS methods, leading to difficulty in finding the optimal solution because of the existence of many possible MFVSs. [Results] Here, we introduce a novel method, called weighted MFVS (WMFVS), which integrates the gene differential expression value with MFVS to select the maximum-weighted MFVS from all possible MFVSs in a protein interaction network. Our experimental results show that WMFVS achieves better performance than using traditional bio-data or network-data analyses alone. [Conclusion] This method balances the advantage of differential gene expression analyses and network analyses, improves the low accuracy of differential gene expression analyses and decreases the instability of pure network analyses. Furthermore, WMFVS can be easily applied to various kinds of networks, providing a useful framework for data analysis and prediction.

この論文で使われている画像

参考文献

1. Vogt PK. Cancer genes. West J Med. 1993;158(3):273–8.

2. Luo P, Ding Y, Lei X, Wu FX. deepDriver: predicting cancer driver genes based on somatic mutations using deep

convolutional neural networks. Front Genet. 2019;10:13.

3. Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B, Karchin R. Evaluating the evaluation of cancer driver genes.

Proc Natl Acad Sci. 2016;113(50):14330–5.

4. Parmigiani G, Boca S, Lin J, Kinzler KW, Velculescu V, Vogelstein B. Design and analysis issues in genome-wide

somatic mutation studies of cancer. Genomics. 2009;93(1):17.

5. Cheng F, Zhao J, Zhao Z. Advances in computational approaches for prioritizing driver mutations and significantly

mutated genes in cancer genomes. Briefings Bioinf. 2016;17(4):642–56.

6. Dai H, Li L, Zeng T, Chen L. Cell-specific network constructed by single-cell RNA sequencing data. Nucleic Acids Res.

2019;47(11):62–62.

7. Ebbert MT, Jensen TD, Jansen-West K, Sens JP, Reddy JS, Ridge PG, Kauwe JS, Belzil V, Pregent L, Carrasquillo MM,

et al. Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight.

Genome Biol. 2019;20(1):97.

8. Zañudo JGT, Yang G, Albert R. Structure-based control of complex networks with nonlinear dynamics. Proc Natl

Acad Sci. 2017;114(28):7234–9.

9. Mochizuki A, Fiedler B, Kurosawa G, Saito D. Dynamics and control at feedback vertex sets. II: a faithful monitor to

determine the diversity of molecular activities in regulatory networks. J Theor Biol. 2013;335:130–46.

10. Guo WF, Zhang SW, Liu LL, Liu F, Shi QQ, Zhang L, Tang Y, Zeng T, Chen L. Discovering personalized driver mutation

profiles of single samples in cancer by network control strategy. Bioinformatics. 2018;34(11):1893–903.

11. Bao Y, Hayashida M, Liu P, Ishitsuka M, Nacher JC, Akutsu T. Analysis of critical and redundant vertices in controlling

directed complex networks using feedback vertex sets. J Comput Biol. 2018;25(10):1071–90.

12. Garey MR, Johnson DS. Computers and intractability. San Francisco: Freeman; 1979.

13. Guruswami V, Lee E. Inapproximability of feedback vertex set for bounded length cycles. In: Electronic colloquium

on computational complexity (ECCC), vol. 21; 2014. p. 2

14. Becker A, Bar-Yehuda R, Geiger D. Randomized algorithms for the loop cutset problem. J Artif Intell Res.

2000;12:219–34.

15. Cao Y, Chen J, Liu Y. On feedback vertex set: new measure and new structures. Algorithmica. 2015;73(1):63–86.

16. Fomin FV, Villanger Y. Finding induced subgraphs via minimal triangulations. 2009. arXiv preprint arXiv:​0909.​5278

17. Chakradhar ST, Balakrishnan A, Agrawal VD. An exact algorithm for selecting partial scan flip-flops. J Electron Test.

1995;7(1–2):83–93.

18. Lloyd EL, Soffa ML, Wang CC. On locating minimum feedback vertex sets. J Comput Syst Sci. 1988;37(3):292–311.

19. Smith G, Walford R. The identification of a minimal feedback vertex set of a directed graph. IEEE Trans Circuits Syst.

1975;22(1):9–15.

20. Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, Assmus HE, Andrade-Navarro MA, Wanker

EE. A directed protein interaction network for investigating intracellular signal transduction. Sci Signaling.

2011;4(189):8–8.

21. Liu Y, Sun J, Zhao M. ONGene: a literature-based database for human oncogenes. J Genet Genomics.

2017;44(2):119–21.

22. Zhao M, Sun J, Zhao Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41(D1):970–6.

23. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic

dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696–705.

24. Repana D, Nulsen J, Dressler L, Bortolomeazzi M, Venkata SK, Tourna A, Yakovleva A, Palmieri T, Ciccarelli FD. The

Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer

sequencing screens. Genome Biol. 2019;20(1):1.

25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander

ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression

profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.

26. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network

CGAR, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113.

27. Lin CY, Lee CH, Chuang YH, Lee JY, Chiu YY, Lee YHW, Jong YJ, Hwang JK, Huang SH, Chen LC, et al. Membrane

protein-regulated networks across human cancers. Nat Commun. 2019;10(1):1–17.

28. Morgan DO. The Cell Cycle: Principles of Control. London: New Science Press; 2007.

29. Chae SW, Sohn JH, Kim D-H, Choi YJ, Park YL, Kim K, Cho YH, Pyo J-S, Kim JH. Overexpressions of Cyclin B1, cdc2,

p16 and p53 in human breast cancer: the clinicopathologic correlations and prognostic implications. Yonsei Med J.

2011;52(3):445–53.

30. Mao A, Chen M, Qin Q, Liang Z, Jiang W, Yang W, Wei C. ZBTB7A promotes migration, invasion and metastasis of

human breast cancer cells through NF-κB-induced epithelial-mesenchymal transition in vitro and in vivo. J Biochem.

2019;166(6):485–93.

31. Jiang W, Liu T, Ren T, Xu K. Two hardness results on feedback vertex sets. In: Frontiers in algorithmics and algorithmic

aspects in information and management. Berlin: Springer; 2011. pp. 233–243

32. Madelaine FR, Stewart IA. Improved upper and lower bounds on the feedback vertex numbers of grids and but‑

terflies. Discrete Math. 2008;308(18):4144–64.

33. Gabow HN. Path-based depth-first search for strong and biconnected components. Inf Process Lett. 2000;74:107–14.

Page 16 of 17

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Li et al. BMC Bioinformatics

(2021) 22:143

Page 17 of 17

34. Gurobi Optimization L. Gurobi optimizer reference manual (2020). http://​www.​gurobi.​com

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る