リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of large crystallographic strain in rutile-type ruthenium dioxide epitaxial thin film」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of large crystallographic strain in rutile-type ruthenium dioxide epitaxial thin film

Fatima Zainab 東北大学

2021.09.24

概要

In this chapter, I introduced the research background. Strain engineering has gained considerable attention for tuning the physical properties of functional oxides. For example, in the case of perovskite oxide with the cubic structures, a wide variety of commercially available single crystal substrates are present, and by choosing such substrates, strain engineering on physical properties has been investigated [1]. Rutile-type RuO2 is a functional transition metal oxide with an exceptional combination of low resistivity and high thermal/chemical stability and leads to practical applications such as electrodes and catalysts [2]. For both these applications, RuO2 is often used in the form of thin films and subjected to lattice strain. Recently, strain engineering on RuO2 leads to the emergence of superconductivity by the application of epitaxial strain [3]. Additionally, the catalytic property is also improved by the application of such strain [4,5]. However, strain in rutile oxides is uncontrollable and limited to a small value due to the lack of commercially available lattice-matched single crystal substrates. Although growth-mode induced strain is an alternative approach to control the strain, its amplitude is limited to 1% [6]. In this study, I developed a route to control the strain in rutile-type RuO2 epitaxial thin film and strain engineering on the functionalities.

この論文で使われている画像

参考文献

[1] D. G. Schlom et al., MRS Bull. 39, 118 (2014).

[2] H. Over, Chem. Rev. 112, 3356 (2012).

[3] M. Uchida et al., Phy. Rev. Lett. 125, 147001 (2020).

[4] K. Stoerzinger et al., J. Phys. Chem. Lett. 5, 1636 (2014).

[5] G. Buvat et al., ACS Catal. 10, 806 (2020).

[6] D. Kutsuzawa et al., Phys. Status Solidi B 257, 2000188 (2020).

[7] C.E. Boman et al., Acta Chem. Scand. 24, 116–122 (1970).

[8] S. Fischer et al., Cryst. Growth Des. 20, 2734–2741 (2020).

[9] G. Eres et al., PRL 117, 206102 (2016).

[10] G. X. Miao et al., Thin Solid Films. 478, 159–163 (2005).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る