リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anionic ordering in Pb₂Ti₄O₉F₂ revisited by nuclear magnetic resonance and density functional theory」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anionic ordering in Pb₂Ti₄O₉F₂ revisited by nuclear magnetic resonance and density functional theory

Oka, Kengo Ichibha, Tom Kato, Daichi Noda, Yasuto Tominaga, Yusuke Yamada, Kosei Iwasaki, Mitsunobu Noma, Naoki Hongo, Kenta Maezono, Ryo Reboredo, Fernando A. 京都大学 DOI:10.1039/D2DT00839D

2022.10.28

概要

A combination of 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) and density functional theory (DFT) were used to study the ordering of F atoms in Pb₂Ti₄O₉F₂. This analysis revealed that F atoms predominantly occupy two of the six available inequivalent sites in a ratio of 73 : 27. DFT-based calculations explained the preference of F occupation on these sites and quantitatively reproduced the experimental occupation ratio, independent of the choice of functional. We concluded that the Pb atom's 6s2 lone pair may play a role (∼0.1 eV per f.u.) in determining the majority and minority F occupation sites with partial density of states and crystal orbital Hamiltonian population analyses applied to the DFT wave functions.

この論文で使われている画像

参考文献

1. H. Kageyama, T. Yajima, Y. Tsujimoto, T. Yamamoto,C. Tassel and Y. Kobayashi, Exploring Structures and Properties through Anion Chemistry, Bull. Chem. Soc. Jpn., 2019, 92, 1349–1357.

2. K. Maeda, F. Takeiri, G. Kobayashi, S. Matsuishi, H. Ogino,S. Ida, T. Mori, Y. Uchimoto, S. Tanabe, T. Hasegawa,N. Imanaka and H. Kageyama, Recent Progress on Mixed- Anion Materials for Energy Applications, Bull. Chem. Soc. Jpn., 2022, 95,26–37.

3. H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi,J. M. Rondinelli and K. R. Poeppelmeier, Expanding fron- tiers in materials chemistry and physics with multiple anions, Nat. Commun., 2018, 9, 772.

4. R. Kuriki, T. Ichibha, K. Hongo, D. Lu, R. Maezono,H. Kageyama, O. Ishitani, K. Oka and K. Maeda, A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction, J. Am. Chem. Soc., 2018, 140, 6648–6655.

5. T. Oshima, T. Ichibha, K. S. Qin, K. Muraoka,J. J. M. Vequizo, K. Hibino, R. Kuriki, S. Yamashita,K. Hongo, T. Uchiyama, K. Fujii, D. Lu, R. Maezono,A. Yamakata, H. Kato, K. Kimoto, M. Yashima,Y. Uchimoto, M. Kakihana, O. Ishitani, H. Kageyama andK. Maeda, Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light, Angew. Chem., Int. Ed., 2018, 57, 8154–8158.

6. T. Oshima, T. Ichibha, K. Oqmhula, K. Hibino, H. Mogi,S. Yamashita, K. Fujii, Y. Miseki, K. Hongo, D. Lu,R. Maezono, K. Sayama, M. Yashima, K. Kimoto, H. Kato,M. Kakihana, H. Kageyama and K. Maeda, Two- Dimensional Perovskite Oxynitride K2LaTa2O6N with an H+/K+ Exchangeability in Aqueous Solution Forming a Stable Photocatalyst for Visible-Light H2 Evolution, Angew. Chem., Int. Ed., 2020, 59, 9736–9743.

7. Y.-I. Kim, P. M. Woodward, K. Z. Baba-Kishi and C. W. Tai, Characterization of the Structural, Optical, and DielectricProperties of Oxynitride Perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb), Chem. Mater., 2004, 16, 1267–1276.

8. K. Page, M. W. Stoltzfus, Y.-I. Kim, T. Proffen,P. M. Woodward, A. K. Cheetham and R. Seshadri, Local Atomic Ordering in BaTaO2N Studied by Neutron Pair Distribution Function Analysis and Density Functional Theory, Chem. Mater., 2007, 19, 4037–4042.

9. M. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes and J. P. Attfield, Anion order in perovskite oxynitrides, Nat. Chem., 2010, 3, 47–52.

10. T. Yamamoto, D. Zeng, T. Kawakami, V. Arcisauskaite,K. Yata, M. A. Patino, N. Izumo, J. E. McGrady,H. Kageyama and M. A. Hayward, The role of π-blocking hydride ligands in a pressure-induced insulator-to- metal phase transition in SrVO2H, Nat. Commun., 2017, 8, 1217.

11. J. P. Attfield, Principles and Applications of Anion Order in Solid Oxynitrides, Cryst. Growth Des., 2013, 13, 4623–4629.

12. A. Fuertes, Prediction of Anion Distributions Using Pauling’s Second Rule, Inorg. Chem., 2006, 45, 9640–9642.

13. C. M. Thompson, C. K. Blakely, R. Flacau, J. E. Greedan and V. V. Poltavets, Structural and magnetic behavior of the cubicoxyfluoride SrFeO2F studied by neutron diffraction,J. Solid State Chem., 2014, 219, 173–178.

14. F. J. Berry, F. C. Coomer, C. Hancock, O. Helgason,E. A. Moore, P. R. Slater, A. J. Wright and M. F. Thomas, Structure and magnetic properties of the cubic oxide fluor- ide BaFeO2F, J. Solid State Chem., 2011, 184, 1361–1366.

15. T. Katsumata, M. Nakashima, H. Umemoto andY. Inaguma, Synthesis of the novel perovskite-type oxyfluor- ide PbScO2F under high pressure and high temperature,J. Solid State Chem., 2008, 181, 2737–2740.

16. R. L. Needs and M. T. Weller, A New 2+/3+ Perovskite: The Synthesis and Structure of BaScO2F, J. Solid State Chem., 1998, 139, 422–423.

17. F. Takeiri, T. Yamamoto, N. Hayashi, S. Hosokawa, K. Arai,J. Kikkawa, K. Ikeda, T. Honda, T. Otomo, C. Tassel,K. Kimoto and H. Kageyama, AgFeOF2: A Fluorine-Rich Perovskite Oxyfluoride, Inorg. Chem., 2018, 57, 6686–6691.

18. T. Katsumata, R. Suzuki, N. Satoh, S. Suzuki,M. Nakashima, Y. Inaguma, D. Mori, A. Aimi andY. Yoneda, Synthesis of new perovskite-type oxyfluorides, BaInO2F and comparison of the structure among perovs- kite-type oxyfluorides, J. Solid State Chem., 2019, 279, 120919.

19. Y. Inaguma, K. Sugimoto and K. Ueda, Synthesis of the per- ovskite-type oxyfluoride AgTiO2F: an approach adopting the HSAB principle, Dalton Trans., 2020, 49, 6957–6963.

20. M. Ai-Mamouri, P. P. Edwards, C. Greaves and M. Slaski, Synthesis and superconducting properties of the strontium copper oxy-fluoride Sr2CuO2F2+δ, Nature, 1994, 369, 382–384.

21. G. Simon Case, A. L. Hector, W. Levason, R. L. Needs,M. F. Thomas and M. T. Weller, Syntheses, powder neutron diffraction structures and Mössbauer studies of some complex iron oxyfluorides: Sr3Fe2O6F0.87, Sr2FeO3F and Ba2InFeO5F0.68, J. Mater. Chem., 1999, 9, 2821–2827.

22. A. L. Hector, J. A. Hutchings, R. L. Needs, M. F. Thomas and M. T. Weller, Structural and Mössbauer study of Sr2FeO3X (X = F, Cl, Br) and the magnetic structure of Sr2FeO3F, J. Mater. Chem., 2001, 11, 527–532.

23. R. L. Needs and M. T. Weller, Synthesis and structure of Ba2InO3F: oxide/fluoride ordering in a new K2NiF4 super- structure, J. Chem. Soc., Chem. Commun., 1995, 353–354.

24. R. L. Needs, M. T. Weller, U. Scheler and R. K. Harris, Synthesis and structure of Ba2InO3X (X = F, Cl, Br) and Ba2ScO3F; oxidehalide ordering in K2NiF4-type structures,J. Mater. Chem., 1996, 6, 1219–1224.

25. Y. Su, Y. Tsujimoto, Y. Matsushita, Y. Yuan, J. He andK. Yamaura, High-Pressure Synthesis, Crystal Structure, and Magnetic Properties of Sr2MnO3F: A New Member of Layered Perovskite Oxyfluorides, Inorg. Chem., 2016, 55, 2627–2633.

26. Y. Tsujimoto, K. Yamaura, N. Hayashi, K. Kodama,N. Igawa, Y. Matsushita, Y. Katsuya, Y. Shirako, M. Akaogi and E. Takayama-Muromachi, Topotactic Synthesis and Crystal Structure of a Highly Fluorinated Ruddlesden– Popper-Type Iron Oxide, Sr3Fe2O5+xF2−x(x∼0.44), Chem. Mater., 2011, 23, 3652–3658.

27. L.-S. Du, F. Wang and C. P. Grey, High-Resolution 19F MAS and 19F–113Cd REDOR NMR Study of Oxygen/Fluorine Ordering in Oxyfluorides, J. Solid State Chem., 1998, 140, 285–294.

28. L. Pauling, The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern struc- tural chemistry, Cornell University Press, Ithaca, N.Y., 1960,pp. 543–562.

29. K. Oka, H. Hojo, M. Azuma and K. Oh-ishi, Temperature- Independent, Large Dielectric Constant Induced by Vacancy and Partial Anion Order in the Oxyfluoride Pyrochlore Pb2Ti2O6−δF2δ, Chem. Mater., 2016, 28, 5554–5559.

30. Y. Inaguma, K. Ueda, T. Katsumata and Y. Noda, Low-temp- erature formation of Pb2OF2 with O/F anion ordering by solid state reaction, J. Solid State Chem., 2019, 277, 363– 367.

31. K. Oka and K. Oh-ishi, Observation of Anion Order in Pb2Ti4O9F2, Inorg. Chem., 2015, 54, 10239–10242.

32. V. Kahlenberg and H. Böhm, The structures of α- and β- Bi2Ti4O11, Acta Crystallogr., Sect. B: Struct. Sci., 1995, 51, 11–18.

33. T. Katsumata, M. Nakashima, Y. Inaguma and T. Tsurui, Synthesis of New Perovskite-Type Oxyfluoride, PbMnO2F, Bull. Chem. Soc. Jpn., 2012, 85, 397–399.

34. S. Kawaguchi, M. Takemoto, K. Osaka, E. Nishibori,C. Moriyoshi, Y. Kubota, Y. Kuroiwa and K. Sugimoto, High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8, Rev. Sci. Instrum., 2017, 88, 085111.

35. F. Izumi and K. Momma, Three-Dimensional Visualization in Powder Diffraction, Solid State Phenomena, 2007, 130, 15–20.

36. K. Momma, T. Ikeda, A. A. Belik and F. Izumi, Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting, Powder Diffr., 2013, 28, 184–193.

37. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,A. Smogunov, P. Umari and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source soft- ware project for quantum simulations of materials, J. Phys.: Condens. Matter, 2009, 21, 395502.

38. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865–3868.

39. A. D. Becke, Density-functional exchange-energy approxi- mation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098–3100.

40. C. Lee, W. Yang and R. G. Parr, Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

41. J. P. Perdew and Y. Wang, Accurate and simple analytic rep- resentation of the electron-gas correlation energy, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 45, 13244–13249.

42. J. P. Perdew and Y. Wang, Erratum: Accurate and simple analytic representation of the electron-gas correlation energy [Phys. Rev. B 45, 13244 (1992)], Phys. Rev. B, 2018,98, 079904.

43. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758–1775.

44. A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci., 2014, 95, 337–350.

45. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 50, 17953–17979.

46. R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier and R. Dronskowski, LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from pro- jector-augmented-wave-based density-functional theory,J. Comput. Chem., 2020, 41, 1931–1940.

47. S. Maintz, V. L. Deringer, A. L. Tchougréeff andR. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, J. Comput. Chem., 2013, 34, 2557–2567.

48. S. Maintz, V. L. Deringer, A. L. Tchougréeff andR. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem., 2016, 37, 1030–1035.

49. Y. Kurauchi, T. Katayama, A. Chikamatsu and T. Hasegawa, Two-Dimensional Fluorine Distribution in a Heavily DistortedPerovskite Nickel Oxyfluoride Revealed by First- Principles Calculation, J. Phys. Chem. C, 2019, 123, 31190–31195.

50. A. Walsh, D. J. Payne, R. G. Egdell and G. W. Watson, Stereochemistry of post-transition metal oxides: revision of the classical lone pair model, Chem. Soc. Rev., 2011, 40, 4455–4463.

51. D. Lee and H. N. Lee, Controlling Oxygen Mobility in Ruddlesden–Popper Oxides, Materials, 2017, 10, 368.

52. Ismunandar and B. J. Kennedy, Gunawan and Marsongkohadi, Structure ofABi2Nb2O9 (A = Sr, Ba): Refinement of Powder Neutron Diffraction Data, J. Solid State Chem., 1996, 126, 135–141.

53. K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,J. Appl. Crystallogr., 2011, 44, 1272–1276.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る