リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Organic Phosphorus Substantially Contributes to Crop Plant Nutrition in Soils with Low Phosphorus Availability」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Organic Phosphorus Substantially Contributes to Crop Plant Nutrition in Soils with Low Phosphorus Availability

Moro, Hitoshi Park, Ho-Dong Kunito, Takashi 信州大学

2021.05.06

概要

To evaluate phosphorus (P) availability and the role of microorganisms in P dynamics in the barley rhizosphere, we constructed a rhizobox using two arable Andosols under different fertilization management regimens and cultivated barley (Hordeum vulgare L. cv. Minorimugi) for 5 weeks. The phosphatase-labile pool of organic phosphorus (Po) was assessed using a phosphataseaddition approach in combination with chemical extraction of Po from soils. A considerable amount of inorganic P (Pi) in the NaHCO3 fraction was taken up by barley roots in a soil with high Pi availability, whereas Po, primarily phytate-like P in the NaHCO3 fraction, was hydrolyzed and then taken up by barley roots in a soil with low Pi availability. No significant utilization of either NaOH-Pi or NaOH-Po was observed for both soils during the 5-week cultivation. In the soil with low Pi availability, elevated acid phosphomonoesterase and phosphodiesterase activities, and greater utilization of Po substrates by bacteria in the Biolog ECO plate, were observed in the rhizosphere when compared with those in the bulk soil. This suggested enhanced Po hydrolysis by increased phosphatase activities to meet the P demand, making the Po an important P source for barley in the soil.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Borie, F.; Zunino, H. Organic matter-phosphorus association as a sink in P-fixation processes in allophanic soils of Chile. Soil Biol.

Biochem. 1983, 15, 599–603. [CrossRef]

Moro, H.; Kunito, T.; Sato, T. Assessment of phosphorus bioavailability in cultivated Andisols from a long-term fertilization field

experiment using chemical extractions and soil enzyme activities. Arch. Agron. Soil Sci. 2015, 61, 1107–1123. [CrossRef]

Zubillaga, M.S.; Giuffré, L. Soil phosphorus mobilization in different taxonomic orders. J. Plant Nutr. Soil Sci. 1999, 162, 201–205.

[CrossRef]

Kunito, T.; Haraguchi, S.; Hanada, K.; Fujita, K.; Moro, H.; Nagaoka, K.; Otsuka, S. pH is the dominant factor controlling the levels

of phytate-like and DNA-like phosphorus in 0.5M NaHCO3 -extracts of soils: Evaluation with phosphatase-addition approach.

Geoderma 2021, 398, 115113. [CrossRef]

Tarafdar, J.C.; Claassen, N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of

phosphatases produced by plant roots and microorganisms. Biol. Fertil. Soils 1988, 5, 308–312. [CrossRef]

Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action: Biological Processes

in Soil Phosphorus Cycling (Soil Biology 26); Bünemann, E.K., Oberson, A., Frossard, E., Eds.; Springer: Berlin, Germany, 2011; pp.

215–243.

Spohn, M.; Treichel, N.S.; Cormann, M.; Schloter, M.; Fischer, D. Distribution of phosphatase activity and various bacterial phyla

in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biol. Biochem. 2015, 89, 44–51. [CrossRef]

Tarafdar, J.C.; Jungk, A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol.

Fertil. Soils 1987, 3, 199–204. [CrossRef]

George, T.S.; Turner, B.L.; Gregory, P.J.; Cade-Menun, B.J.; Richardson, A.E. Depletion of organic phosphorus from Oxisols in

relation to phosphatase activities in the rhizosphere. Eur. J. Soil Sci. 2006, 57, 47–57. [CrossRef]

Waldrip, H.M.; He, Z.; Erich, M.S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus

fractions and phosphatase activity. Biol. Fertil. Soils 2011, 47, 407–418. [CrossRef]

Youssef, R.A.; Chino, M. Development of a new rhizobox system to study the nutrient status in the rhizosphere. Soil Sci. Plant

Nutr. 1988, 34, 461–465. [CrossRef]

Sumi, H.; Kunito, T.; Ishikawa, Y.; Sato, T.; Park, H.D.; Nagaoka, K.; Aikawa, Y. Plant roots influence microbial activities as well as

cadmium and zinc fractions in metal-contaminated soil. Chem. Ecol. 2015, 31, 105–110. [CrossRef]

Kitson, R.E.; Mellon, M.G. Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Ind. Eng. Chem. Anal.

Ed. 1944, 16, 379–383.

He, Z.; Griffin, T.S.; Honeycutt, C.W. Enzymatic hydrolysis of organic phosphorus in swine manure and soil. J. Environ. Qual.

2004, 33, 367–372. [CrossRef] [PubMed]

Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta

1962, 27, 31–36.

Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties; Weaver, R.W., Angle, S.,

Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994;

pp. 775–833.

Classen, A.T.; Boyle, S.I.; Haskins, K.E.; Overby, S.T.; Hart, S.C. Community-level physiological profiles of bacteria and fungi:

Plate type and incubation temperature influences on contrasting soils. FEMS Microbiol. Ecol. 2003, 44, 319–328. [CrossRef]

Kunito, T.; Nagaoka, K. Effects of plant litter type and additions of nitrogen and phosphorus on bacterial community-level

physiological profiles in a brown forest soil. Microbes Environ. 2009, 24, 68–71. [CrossRef] [PubMed]

Turner, B.L.; Papházy, M.J.; Haygarth, P.M.; McKelvie, I.D. Inositol phosphates in the environment. Phil. Trans. R. Soc. Lond. B

2002, 357, 449–469.

Menezes-Blackburn, D.; Jorquera, M.A.; Greiner, R.; Gianfreda, L.; Mora, M.L. Phytases and phytase-labile organic phosphorus in

manures and soils. Crit. Rev. Environ. Sci. Technol. 2013, 43, 916–954. [CrossRef]

Richardson, A.E.; Hadobas, P.A.; Hayes, J.E.; O’Hara, C.P.; Simpson, R.J. Utilization of phosphorus by pasture plants supplied

with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 2001, 229, 47–56. [CrossRef]

Greiner, R. Phytate-degrading enzymes: Regulation of synthesis in microorganisms and plants. In Inositol Phosphates: Linking

Agriculture and the Environment; Turner, B.L., Richardson, A.E., Mullaney, E.J., Eds.; CAB International: Wallingford, UK, 2007; pp.

78–96.

Agronomy 2021, 11, 903

23.

24.

25.

26.

27.

9 of 9

Ye, D.; Zhang, X.; Li, T.; Xu, J.; Chen, G. Phosphorus-acquisition characteristics and rhizosphere properties of wild barley in

relation to genotypic differences as dependent on soil phosphorus availability. Plant Soil 2018, 423, 503–516.

Sharpley, A.N. Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Sci. Soc. Am. J. 1985, 49, 905–911. [CrossRef]

Kunito, T.; Tobitani, T.; Moro, H.; Toda, H. Phosphorus limitation in microorganisms leads to high phosphomonoesterase activity

in acid forest soils. Pedobiologia 2012, 55, 263–270. [CrossRef]

Fujita, K.; Kunito, T.; Moro, H.; Toda, H.; Otsuka, S.; Nagaoka, K. Microbial resource allocation for phosphatase synthesis reflects

the availability of inorganic phosphorus across various soils. Biogeochemistry 2017, 136, 325–339. [CrossRef]

Mise, K.; Maruyama, R.; Miyabara, Y.; Kunito, T.; Senoo, K.; Otsuka, S. Time-series analysis of phosphorus-depleted microbial

communities in carbon/nitrogen-amended soils. Appl. Soil Ecol. 2020, 145, 103346. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る