リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae

Itoh, Yusuke Shimotsuma, Yushi Jouraku, Akiya Dermauw, Wannes Van Leeuwen, Thomas Osakabe, Masahiro 京都大学 DOI:10.1016/j.pestbp.2021.105000

2022.02

概要

Pyridaben is a mitochondrial electron transport complex I inhibitor. The H110R mutation in the PSST subunit has been reported as a major factor in pyridaben resistance in the two-spotted spider mite, Tetranychus urticae. However, backcross experiments revealed that the mutant PSST alone conferred only moderate resistance. In contrast, inhibition of cytochrome P450 (CYP) markedly reduces resistance levels in a number of highly resistant strains. It was reported previously that maternal factors contributed to the inheritance of pyridaben resistance in the egg stage, but the underlying mechanisms have yet to be elucidated. Here, we studied the combined effects of the PSST H110R mutation and candidate CYPs, as metabolic resistance factors, on pyridaben resistance in T. urticae. We found that the maternal effects of inheritance of resistance in the egg stage were associated with CYP activity. Analysis of differential gene expression by RNA-seq identified CYP392A3 as a candidate causal factor for the high resistance level. Congenic strains, where the alleles of both PSST and CYP392A3 were derived from a resistant strain (RR_i; i = 1 or 2) and a susceptible strain (SS_i) in a common susceptible genetic background, were constructed by marker-assisted backcrossing. RR_i showed upregulation of CYP392A3 and high resistance levels (LC50 > 10, 000 mg L⁻¹), while SS_i had LC50 < 10 mg L⁻¹. To disentangle the individual effects of PSST and CYP392A3 alleles, we also attempted to uncouple these genes in RR_i. We conclude that given the variation in LC50 values and expression levels of CYP392A3 in the congenic and uncoupled strains, it is likely that the high pyridaben resistance levels are due to a synergistic or cumulative effect of the combination of mutant PSST and associated CYPs, including CYP392A3, but other yet to be discovered factors cannot be excluded.

この論文で使われている画像

参考文献

Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. J. Econ.Entomol. 18, 265–267. https://doi.org/10.1093/jee/18.2.265a

Aoki, S., 2011. Statistic Analysis Using R, Ohmsha, Tokyo.

Bajda, S., Dermauw, W., Panteleri, R., Sugimoto, N., Douris, V., Tirry, L., Osakabe, M., Vontas, J., Van Leeuwen, T., 2017. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem. Mol. Biol. 80, 79–90. https://doi.org/10.1016/j.ibmb.2016.11.010

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P. F., 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 69, 313–319. https://doi.org/10.1016/j.ympev.2012.08.023

Betts, M. J., Russell, R. B., 2003. Amino acid properties and consequences of substitutions, in: Barnes, M. R., Gray, I. C. (Eds.), Bioinformatics for Geneticists. John Wiley & Sons, Chichester, pp. 289–316.

Bolger, A. M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Demaeght, P., Osborne, E. J., Odman-Naresh, J., Grbić, M., Nauen, R., Merzendorfer, H., Clark, R. M., Van Leeuwen, T., 2014. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochem. Mol. Biol. 51, 52–61. https://doi.org/10.1016/j.ibmb.2014.05.004

den Dunnen, J. T., Antonarakis, S. E., 2000. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat. 15, 7–12. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N

Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbić, M., Clark, R. M., Feyereisen, R., Van Leeuwen, T., 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc. Natl. Acad. Sci. USA 110, E113–E122. https://doi.org/10.1073/pnas.1213214110

Devine, G. J., Barber, M., Denholm, I., 2001. Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manag. Sci. 57, 443–448. https://doi.org/10.1002/ps.307

Feyereisen, R., Dermauw, W., Van Leeuwen, T., 2015. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropod. Pest. Biochem. Physiol. 121, 61–77. https://doi.org/10.1016/j.pestbp.2015.01.004

Grbić, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouze, P., Grbić, V., Osborne, E.J., Dermauw, W., Phuong Cao Thi, N., Ortego, F., Hernandez-Crespo, P., Diaz, I., Martinez, M., Navajas, M., Sucena, E., Magalhaes, S., Nagy, L., Pace, R.M., Djuranovic, S., Smagghe, G., Iga, M., Christiaens, O., Veenstra, J.A., Ewer, J., Mancilla Villalobos, R., Hutter, J.L., Hudson, S.D., Velez, M., Yi, S.V., Zeng, J., Pires-daSilva, A., Roch, F., Cazaux, M., Navarro, M., Zhurov, V., Acevedo, G., Bjelica, A., Fawcett, J.A., Bonnet, E., Martens, C., Baele, G., Wissler, L., Sanchez-Rodriguez, A., Tirry, L., Blais, C., Demeestere, K., Henz, S.R., Gregory, T.R., Mathieu, J., Verdon, L., Farinelli, L., Schmutz, J., Lindquist, E., Feyereisen, R., Van de Peer, Y., 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479, 487–492. https://doi.org/10.1038/nature10640

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., Leduc, R.D., Friedman, N., Regev, A., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–512. https://doi.org/10.1038/nprot.2013.084

Hollingworth, R. M., Ahammadsahib, K. I., Gadelhak, G., McLaughlin, J. L., 1994. New inhibitors of complex I of the mitochondrial electron transport chain with activity as pesticide. Biochem. Soc. Trans. 22, 230–233. https://doi.org/10.1042/bst0220230

Khalighi, M., Dermauw, W., Wybouw, N., Bajda, S., Osakabe, M., Tirry, L., Van Leeuwen, T., 2016. Molecular analysis of cyenopyrafen resistance in the two- spotted spider mite Tetranychus urticae. Pest Manag. Sci. 72, 103–112. https://doi.org/10.1002/ps.4071

Kim, Y. J., Lee, S. H., Lee, S. W., Ahn, Y. J., 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Manag. Sci. 60, 1001–1006. https://doi.org/10.1002/ps.909

Kim, Y. J., Park, H. M., Cho, J. R., Ahn, Y. J., 2006. Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 99, 954–958. https://doi.org/10.1093/jee/99.3.954

Kunimoto, Y., Imamura, T., Doi, M., Nakano, R., Osakabe, M., 2017. Construction of a spraying system to replace the rotary distributing sprayer. Jpn. J. Appl. Entomol. Zool. 61, 192–194. https://doi.org/10.1303/jjaez.2017.192

Langmead, B., Trapnell, C., Pop, M., Salzberg, S. L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25. https://doi.org/10.1186/gb-2009-10-3-r25

Li, H., 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993. https://doi.org/10.1093/bioinformatics/btr509

Li, X., Schuler, M. A., Berenbaum, M. R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253. https://doi.org/10.1146/annurev.ento.51.110104.151104

Livak, K. J., Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262

Maeoka, A., Yuan, L., Itoh, Y., Saito, C., Doi, M., Imamura, T., Yamaguchi, T., Imura, T., Osakabe, M., 2020. Diagnostic prediction of acaricide resistance gene frequency using quantitative real-time PCR with resistance allele-specific primers in the two-spotted spider mite Tetranychus urticae population (Acari: Tetranychidae). Appl. Entomol. Zool. 55, 329–335. https://doi.org/10.1007/s13355-020-00686-7

Nakamaru-Ogiso, E., Sakamoto, K., Matsuno-Yagi, A., Miyoshi, H., Yagi, T., 2003. The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42, 746–754. https://doi.org/10.1021/bi0269660

Obata, T., Fujii, K., Yoshiya, H., Tsusyumiushi, K., Yoshioka, H., 1992. Synthesis and insecticidal and acaricidal activity of new N-(α-substituted phenoxybenzyl)-4- pyrimidinamines. Pest Manag. Sci. 34, 133–138. https://doi.org/10.1002/ps.2780340207

Osakabe, M., Imamura, T., Nakano, R., Kamikawa, S., Tadatsu, M., Kunimoto, Y., Doi, M., 2017. Combination of restriction endonuclease digestion with the ΔΔCt method in real-time PCR to monitor etoxazole resistance allele frequency in the two-spotted spider mite. Pestic. Biochem. Physiol. 139, 1–8. https://doi.org/10.1016/j.pestbp.2017.04.003

Pfaffl, M. W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 2002–2007. https://doi.org/10.1093/nar/29.9.e45

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Riga, M., Bajda, S., Themistokleous, C., Papadaki, S., Palzewicz, M., Dermauw, W., Vontas, J., Van Leeuwen, T., 2017. The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci. Rep. 7, 9202. https://doi.org/10.1038/s41598-017-09054-y

Schmittgen, T. D., Zakrajsek, B. A., Mills, A. G., Gorn, V., Singer, M. J., Reed, M. W., 2000. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285, 194–204. https://doi.org/10.1006/abio.2000.4753

Shuler, F., Casida, J., 2001. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photaffinity labeling. BBA-Bioenergetics 1506, 79–87. https://doi.org/10.1016/S0005-2728(01)00183-9

Snoeck, S., Kurlovs, A. H., Bajda, S., Feyereisen, R., Greenhalgh, R., Villacis-Perez, E., Kosterlitz, O., Dermauw, W., Clark, R. M., Van Leeuwen, T., 2019. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. Insect Biochem. Mol. Biol. 110, 19–33. https://doi.org/10.1016/j.ibmb.2019.04.011

Stumpf, N., Nauen, R., 2001. Cross-resistance, inheritace, and biochemistry of mitochondrial electron transport inhibitor-acaricides resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 94, 1577–1583. https://doi.org/10.1603/0022-0493-94.6.1577

Sugimoto, N., Osakabe, M., 2014. Cross-resistance between cyenopyrafen and pyridaben in the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Manag. Sci. 70, 1090–1096. https://doi.org/10.1002/ps.3652

Sugimoto, N., Takahashi, A., Ihara, R., Itoh, Y., Jouraku, A., Van Leeuwen, T., Osakabe, M., 2020. QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex Ⅱ inhibitors in Tetranychus urticae. Insect Biochem. Mol. Biol. 123, 103410. https://doi.org/10.1016/j.ibmb.2020.103410

Sun, J., Nishiyama, T., Shimizu, K., Kadota, K., 2013. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14, 219. https://doi.org/10.1186/1471-2105-14-219

Van Leeuwen, T., Dermauw, W., 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu. Rev. Entomol. 61, 475–498. https://doi.org/10.1146/annurev-ento-010715-023907

Van Leeuwen, T., Van Pottelberge, S., Tirry, L., 2005. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manag. Sci. 61, 499–507. https://doi.org/10.1002/ps.1001

Van Leeuwen, T., Tirry, L., Nauen, R., 2006. Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem. Mol. Biol. 36, 869–877. https://doi.org/10.1016/j.ibmb.2006.08.005

Van Leeuwen, T., Vanholme, B., Van Pottelberge, S., Van Nieuwenhuyse, P., Nauen, R., Tirry, L., Denholm, I., 2008. Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc. Natl. Acad. Sci. USA 105, 5980–5985. https://doi.org/10.1073/pnas.0802224105

Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W., Tirry, L., 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem. Mol. Biol. 40, 563–572. https://doi.org/10.1016/j.ibmb.2010.05.008

Van Leeuwen, T., Demaeght, P., Osborne, E. J., Dermauw, W., Gohlke, S., Nauen, R., Grbić, M., Tirry, L., Merzendorfer, H., Clark, R. M., 2012. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc. Natl. Acad. Sci. USA 109, 4407–4412. https://doi.org/10.1073/pnas.1200068109

Van Nieuwenhuyse, P., Van Leeuwen, T., Khajehali, J., Vanholme, B., Tirry, L., 2009. Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag. Sci. 65, 404–412. https://doi.org/10.1002/ps.1705

Van Pottelberge, S., Van Leeuwen, T., Nauen, R., Tirry, L., 2009. Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull. Entomol. Res. 99, 23–31. https://doi.org/10.1017/S0007485308006081

Winer, J., Jung, C. K. S., Shackel, I., Williams, P. M., 1999. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270, 41– 49. https://doi.org/10.1006/abio.1999.4085

参考文献をもっと見る