リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Simulation of the transition metal-based cumulative oxidative potential in East Asia and its emission sources in Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Simulation of the transition metal-based cumulative oxidative potential in East Asia and its emission sources in Japan

Kajino, Mizuo Hagino, Hiroyuki Fujitani, Yuji Morikawa, Tazuko Fukui, Tetsuo Onishi, Kazunari Okuda, Tomoaki Igarashi, Yasuhito 京都大学 DOI:10.1038/s41598-021-85894-z

2021.03.22

概要

The aerosol oxidative potential (OP) is considered to better represent the acute health hazards of aerosols than the mass concentration of fine particulate matter (PM2.5). The proposed major contributors to OP are water soluble transition metals and organic compounds, but the relative magnitudes of these compounds to the total OP are not yet fully understood. In this study, as the first step toward the numerical prediction of OP, the cumulative OP (OPtm*) based on the top five key transition metals, namely, Cu, Mn, Fe, V, and Ni, was defined. The solubilities of metals were assumed constant over time and space based on measurements. Then, the feasibility of its prediction was verified by comparing OPtm* values based on simulated metals to that based on observed metals in East Asia. PM2.5 typically consists of primary and secondary species, while OPtm* only represents primary species. This disparity caused differences in the domestic contributions of PM2.5 and OPtm*, especially in large cities in western Japan. The annual mean domestic contributions of PM2.5 were 40%, while those of OPtm* ranged from 50 to 55%. Sector contributions to the OPtm* emissions in Japan were also assessed. The main important sectors were the road brake and iron–steel industry sectors, followed by power plants, road exhaust, and railways.

この論文で使われている画像

参考文献

1. Shiraiwa, M. et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51, 13545–13567. https://​doi.​org/​

10.​1021/​acs.​est.​7b044​17 (2017).

2. Jiang, H., Ahmed, C. M. S., Canchola, A., Chen, J. Y. & Lin, Y.-H. Use of dithiothreitol assay to evaluate the oxidative potential of

atmospheric aerosols. Atmosphere 10, 571. https://​doi.​org/​10.​3390/​atmos​10100​571 (2019).

3. Molina, C. et al. Airborne aerosols and human health: Leapfrogging from mass concentration to oxidative potential. Atmosphere.

11, 917. https://​doi.​org/​10.​3390/​atmos​11090​917 (2020).

4. Hedayat, F., Stevanovic, S., Miljevic, B., Bottle, S. & Ristovski, Z. D. Review-evaluating the molecular assays for measuring the oxidative potential of particulate matter. Chem. Ind. Chem. Eng. Q. 21, 201–210. https://​doi.​org/​10.​2298/​CICEQ​14022​8031H (2015).

5. Kumagai, Y. et al. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem.

Res. Toxicol. 15, 483–489. https://​doi.​org/​10.​1021/​tx010​099 (2002).

6. Delfino, R. J. et al. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. J. Exp. Sci.

Environ. Epidemiol. 23, 466–473. https://​doi.​org/​10.​1038/​jes.​2013.​25 (2013).

7. Bates, J. T. et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory

effects. Environ. Sci. Technol. 49, 13605–13612. https://​doi.​org/​10.​1021/​acs.​est.​5b029​67 (2015).

8. Abrams, J. Y. et al. Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department

visits. Environ. Health Perspect. 125, 107008. https://​doi.​org/​10.​1289/​EHP15​45 (2017).

9. Charrier, J. G. & Anastasio, C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the

importance of soluble transition metals. Atmos. Chem. Phys. 12, 9321–9333. https://​doi.​org/​10.​1054/​acp-​12-​9321-​2012 (2012).

Scientific Reports |

Vol:.(1234567890)

(2021) 11:6550 |

https://doi.org/10.1038/s41598-021-85894-z

10

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

10. Nishita-Hara, C., Hirabayashi, M., Hara, K., Yamazaki, A. & Hayashi, M. Dithiothreitol-measured oxidative potential of sizesegregated particulate matter in Fukuoka, Japan: Effects of Asian dust events. GeoHealth 3, 160–173. https://​doi.​org/​10.​1029/​

2019G​H0001​89 (2019).

11. Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J. & Sioutas, C. Seasonal and spatial variation in dithiothreitol (DTT) activity of

quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. J. Environ. Sci. Heal. A. 49, 441–451.

https://​doi.​org/​10.​1080/​10934​529.​2014.​854677 (2014).

12. Sauvain, J. J. & Rossi, M. J. Quantitative aspects of the interfacial catalytic oxidation of dithiothreitol by dissolved oxygen in the

presence of carbon nanoparticles. Environ. Sci. Technol. 50, 996–1004. https://​doi.​org/​10.​1021/​acs.​est.​5b049​58 (2016).

13. Verma, V. et al. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity—Assessing the

importance of quinones and atmospheric aging. Atmos. Environ. 120, 351–359. https://​doi.​org/​10.​1016/j.​atmos​env.​2015.​09.​010

(2015).

14. Yu, H., Wei, J., Cheng, Y., Subedi, K. & Verma, V. Synergistic and antagonistic interactions among the particulate matter components

in generating reactive oxygen species based on the dithiothreitol assay. Environ. Sci. Technol. 52, 2261–2270. https://​doi.​org/​10.​

1021/​acs.​est.​7b042​61 (2018).

15. Jiang, H. et al. Role of functional groups in reaction kinetics of dithiothreitol with secondary organic aerosols. Environ. Pollut.

https://​doi.​org/​10.​1016/j.​envpol.​2020.​114402 (2020).

16. Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J. & Sioutas, C. Global perspective on the oxidative potential of airborne particulate

matter: A synthesis of research findings. Environ. Sci. Technol. 48(13), 7576–7583. https://​doi.​org/​10.​1021/​es500​937x (2014).

17. Fujitani, Y., Furuyama, A., Tanabe, K. & Hirano, S. Comparison of oxidative abilities of ­PM2.5 collected at traffic and residential

sites in Japan. Contribution of transition metals and primary and secondary aerosols. Aerosol Air Qual. Res. 17, 574–587. https://​

doi.​org/​10.​4209/​aaqr.​2016.​07.​0291 (2017).

18. Fang, T., Lakey, P. S. J., Weber, R. J. & Shiraiwa, M. Oxidative potential of particulate matter and generation of reactive oxygen

species in epithelial lining fluid. Environ. Sci. Technol. 53(21), 12784–12792. https://​doi.​org/​10.​1021/​acs.​est.​9b038​23 (2019).

19. Lakey, P. S. J. et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human

respiratory tract. Sci. Rep. 6, 32916. https://​doi.​org/​10.​1038/​srep3​2916 (2016).

20. Yang, A. et al. Spatial variation and land use regression modeling of the oxidative potential of fine parciels. Environ. Health Perspect.

123, 1187–1192. https://​doi.​org/​10.​1289/​ehp.​14089​16 (2015).

21. Jedynska, A. et al. Spatial variations and development of land use regression models of oxidative potential in ten European study

areas. Atmos. Environ. 150, 24–32. https://​doi.​org/​10.​1016/j.​atmos​env.​2016.​11.​029 (2017).

22. Daellenbach, K. R. et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 587, 414–419.

https://​doi.​org/​10.​1038/​s41586-​020-​2902-8 (2014).

23. Kajino, M. et al. Modeling transition metals in East Asia and Japan and its emission sources. GeoHealth https://​doi.​org/​10.​1029/​

2020G​H0002​59 (2020).

24. RIVM, Multiple Path Particle Dosimetry Model (MPPD v1.0): A model for human and rat airway particle dosimetry, Bilthoven,

The Netherlands. RIVA Report 650010030 (2002).

25. Hashizume, M. et al. Health effects of Asian dust: A systematic review and meta-analysis. Environ. Health Perspect. 128(6), 066001.

https://​doi.​org/​10.​1289/​EHP53​12 (2020).

26. Kajino, M. et al. Model simulation of atmospheric aerosols, Trans-Boundary Pollution in North-East Asia, Eds. K. Hayakawa, S.

Nagao, Y. Inomata, M. Inoue, and A. Matsuki. NOVA Science Publishers. ISBN:978-1-53614-742-2, pp. 147–166 (2018).

27. Kurokawa, J. et al. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission

inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 13, 11019–11058. https://​doi.​org/​10.​5194/​acp-​13-​11019-​2013 (2013).

28. Hagino, H., Oyama, M. & Sasaki, S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system

under urban city driving cycles. Atmos. Environ. 131, 269–278. https://​doi.​org/​10.​1016/j.​atmos​env.​2016.​02.​014 (2016).

29. Ito, A., Guangxing, L. & Penner, J. E. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides. Sci. Rep. 8, 7347.

https://​doi.​org/​10.​1038/​s41598-​018-​25756-3 (2018).

30. Rabinovitch, N. et al. Importance of the personal endotoxin cloud in school-age children with asthma. J Allergy Clin Immunol.

116, 1053–1057 (2005).

31. Onishi, K. et al. Predictions of health effects of cross-border atmospheric pollutants using an aerosol forecast model. Environ. Int.

117, 48–56. https://​doi.​org/​10.​1016/j.​envint.​2018.​04.​035 (2018).

32. Kajino, M. et al. NHM-Chem, the Japan Meteorological Agency’s regional meteorology—Chemistry model: Model evaluations

toward the consistent predictions of the chemical, physical, and optical properties of aerosols. J. Meteor. Soc. Japan. 97(2), 337–374.

https://​doi.​org/​10.​2151/​jmsj.​2019-​020 (2019).

33. Katata, G. et al. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station

accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion

model. Atmos. Chem. Phys. 15, 1029–1070. https://​doi.​org/​10.​5194/​acp-​15-​1029-​2015 (2015).

34. Kobayashi, S. et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48. https://​

doi.​org/​10.​2151/​jmsj.​2015-​001 (2015).

35. Okuda, T. et al. Rapid and simple determination of multi-elements in aerosol samples collected on Quartz fiber filters by using

EDXRF coupled with fundamental parameter quantification technique. Aerosol Air Qual. Res. 13, 1864–1876. https://​doi.​org/​10.​

4209/​aaqr.​2012.​11.​0308 (2013).

36. Okuda, T., Schauer, J. J. & Shafer, M. M. Improved methods for elemental analysis of atmospheric aerosols for evaluating human

health impacts of aerosols in East Asia. Atmos. Environ. 97, 552–555. https://​doi.​org/​10.​1016/j.​atmos​env.​2014.​01.​043 (2014).

37. Okuda, T., Nakao, S., Katsuno, M. & Tanaka, S. Source identification of nickel in TSP and P

­ M2.5 in Tokyo, Japan. Atmos. Environ.

41, 7642–7648. https://​doi.​org/​10.​1016/j.​atmos​env.​2007.​08.​050 (2007).

Acknowledgements

The current research was mainly supported by the Environmental Research and Technology Development Fund of

the Environmental Restoration and Conservation Agency (ERCA) (JPMEERF20165005 and JPMEERF20165051).

It was also supported by the Fundamental Research Budget of MRI (M5 and P5), the Japan Society for the Promotion of Sciences (JSPS) (KAKENHI grant nos. JP19H01155, JP19K19468, JP25870447, JP20H00636), and the

Joint Research Program of Arid Land Research Centter, Tottori University (No. 27C2001, 28D20056, 30D2003,

and 02C2010). The authors thank Prof. Kazuichi Hayakawa of Kanazawa University for his useful comments

on the importance of quinones and Mr. Takuya Kishikawa of the University of Tsukuba for the provided data

handling assistance.

Author contributions

M.K. designed the research and conducted the numerical simulations. M.K. wrote the manuscript in collaboration with all coauthors. Y. I. organized the research group, H. H., T. M., and T. F. provided information on the

Scientific Reports |

(2021) 11:6550 |

https://doi.org/10.1038/s41598-021-85894-z

11

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

emission inventories, Y. F. provided the experimental data for the oxidative potential determination, and K. O.,

and T. O. provided the field measurement data of the metals in TSP.

Competing interests The authors declare no competing of interests.

Additional information

Correspondence and requests for materials should be addressed to M.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

Scientific Reports |

Vol:.(1234567890)

(2021) 11:6550 |

https://doi.org/10.1038/s41598-021-85894-z

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る