リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Essential structural features of (2Z,4E)-5-phenylpenta-2,4-dienoic acid for inhibition of root gravitropism」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Essential structural features of (2Z,4E)-5-phenylpenta-2,4-dienoic acid for inhibition of root gravitropism

Shindo, Mitsuru 新藤, 充 シンドウ, ミツル Makigawa, Saki 牧川, 早希 マキガワ, サキ Matsumoto, Kenji マツモト, ケンジ Iwata, Takayuki 岩田, 隆幸 イワタ, タカユキ Wasano, Naoya 和佐野, 直也 ワサノ, ナオヤ Kano, Arihiro 狩野, 有宏 カノウ, アリヒロ Morita, Terao Miyo 森田, 美代 モリタ, ミヨ Fujii, Yoshiharu 藤井, 義晴 フジイ, ヨシハル 九州大学

2020.04

概要

Previously, we found (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) to be a selective inhibitor of root gravitropic bending of lettuce radicles at 5 μM, with no concomitant growth inhibition. Here, we

この論文で使われている画像

参考文献

Abe, M., Nishikawa, K., Fukuda, H., Nakanishi, K., Tazawa, Y., Taniguchi, T., Park,

S.Y., Hiradate, S., Fujii, Y., Okuda, K., Shindo, M., 2012. Key structural features

of cis-cinnamic acid as an allelochemical. Phytochemistry 84, 56–67.

https://doi.org/10.1016/j.phytochem.2012.08.001

Åberg, B., 1961. Some new aspects of the growth regulating effects of phenoxy

compounds, in: Plant Growth Regulation. Iowa State University Press, Ames, pp.

219–232.

Ando, K., 1997. Highly Selective Synthesis of Z-Unsaturated Esters by Using New

Horner-Emmons Reagents, Ethyl (Diarylphosphono)acetates. J. Org. Chem. 62,

1934–1939. https://doi.org/10.1021/jo970057c

Aung, H.T., Furukawa, T., Nikai, T., Niwa, M., Takaya, Y., 2011. Contribution of

cinnamic acid analogues in rosmarinic acid to inhibition of snake venom induced

hemorrhage. Bioorganic Med. Chem. 19, 2392–2396.

https://doi.org/10.1016/j.bmc.2011.02.013

Blancaflor, E.B., Fasano, J.M., Gilroy, S., 1998. Mapping the Functional Roles of Cap

Cells in the Response of Arabidopsis Primary Roots to Gravity. Plant Physiol. 116,

213–222. https://doi.org/10.1104/pp.116.1.213

Dong, D.J., Li, Y., Wang, J.Q., Tian, S.K., 2011. Tunable stereoselective alkene

synthesis by treatment of activated imines with nonstabilized phosphonium ylides.

Chem. Commun. 47, 2158–2160. https://doi.org/10.1039/c0cc04739b

Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., Palme, K., 2002. Lateral

relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature

19

415, 806–809. https://doi.org/10.1038/415806a

Fujii, Y., Wasano, N., Tamura, N., Shindo, Mitsuru; Matsumoto, K., 2016. Ciscinnamic acid analogs and gravitropism modifiers containing them. JP

2016160246 A.

Fukuda, H., Nishikawa, K., Fukunaga, Y., Okuda, K., Kodama, K., Matsumoto, K.,

Kano, A., Shindo, M., 2016. Synthesis of fluorescent molecular probes based on

cis-cinnamic acid and molecular imaging of lettuce roots. Tetrahedron 72, 6492–

6498. https://doi.org/10.1016/j.tet.2016.08.060

Harrison, B.R., Masson, P.H., 2008. ARL2, ARG1 and PIN3 define a gravity signal

transduction pathway in root statocytes. Plant J. 53, 380–392.

https://doi.org/10.1111/j.1365-313X.2007.03351.x

Hiradate, S., Morita, S., Furubayashi, A., Fujii, Y., Harada, J., 2005. Plant growth

inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid. J. Chem. Ecol. 31,

591–601. https://doi.org/10.1007/s10886-005-2047-0

Kiss, J.Z., Guisinger, M.M., Miller, A.J., Stackhouse, K.S., 1997. Reduced

Gravitropism in Hypocotyls of Starch-Deficient Mutants of Arabidopsis. Plant Cell

Physiol. 38, 518–525. https://doi.org/10.1093/oxfordjournals.pcp.a029199

Kiss, J.Z., Hertel, R., Sack, F.D., 1989. Amyloplasts are necessary for full gravitropic

sensitivity in roots of Arabidopsis thaliana. Planta 177, 198–206.

https://doi.org/10.1007/BF00392808

Koepfli, J.B., Thimann, K. V., Went, F.W., 1938. phytormones: structure and

physiological activity. I. J. Biol. Chem. 122, 763–780.

Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C.,

Bennett, M.J. 1999. AUX1 regulates root gravitropism in Arabidopsis by

facilitating auxin uptake within root apical tissues. EMBO J. 18, 2066-2073.

20

https://doi.org/10.1093/emboj/18.8.2066

Mentzer, C., Molho, D., Pacheco, H., 1950. Relation between chemical structure and

inhibition of plant tropisms. Bull. Soc. Chim. Biol. (Paris). 32, 572–582.

Morita, M.T., 2010. Directional Gravity Sensing in Gravitropism. Annu. Rev. Plant

Biol. 61, 705–720. https://doi.org/10.1146/annurev.arplant.043008.092042

Morita, M.T., Tasaka, M., 2004. Gravity sensing and signaling. Curr. Opin. Plant Biol.

7, 712–718. https://doi.org/10.1016/j.pbi.2004.09.001

Nakamura, M., Nishimura, T., Morita, M.T., 2019. Input and signal conversion of

gravity in plant gravitropism. J. Exp. Bot. 1–39. https://doi.org/10.1093/jxb/erz158

Nishikawa, K., Fukuda, H., Abe, M., Nakanishi, K., Taniguchi, T., Nomura, T.,

Yamaguchi, C., Hiradate, S., Fujii, Y., Okuda, K., Shindo, M., 2013a. Substituent

effects of cis-cinnamic acid analogues as plant growh inhibitors. Phytochemistry

96, 132–147. https://doi.org/10.1016/j.phytochem.2013.08.013

Nishikawa, K., Fukuda, H., Abe, M., Nakanishi, K., Tazawa, Y., Yamaguchi, C.,

Hiradate, S., Fujii, Y., Okuda, K., Shindo, M., 2013b. Design and synthesis of

conformationally constrained analogues of cis-cinnamic acid and evaluation of

their plant growth inhibitory activity. Phytochemistry 96, 223–234.

https://doi.org/10.1016/j.phytochem.2013.10.001

Nishimura, T., Hayashi, K.I., Suzuki, H., Gyohda, A., Takaoka, C., Sakaguchi, Y.,

Matsumoto, S., Kasahara, H., Sakai, T., Kato, J.I., Kamiya, Y., Koshiba, T., 2014.

Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant

J. 77, 352–366. https://doi.org/10.1111/tpj.12399

Nishimura, T., Matano, N., Morishima, T., Kakinuma, C., Hayashi, K.I., Komano, T.,

Kubo, M., Hasebe, M., Kasahara, H., Kamiya, Y., Koshiba, T., 2012. Identification

21

of IAA transport inhibitors including compounds affecting cellular PIN trafficking

by two chemical screening approaches using maize coleoptile systems. Plant Cell

Physiol. 53, 1671–1682. https://doi.org/10.1093/pcp/pcs112

Okuda, K., Nishikawa, K., Fukuda, H., Fujii, Y., Shindo, M., 2014. cis-Cinnamic Acid

Selective Suppressors Distinct from Auxin Inhibitors. Chem. Pharm. Bull. 62,

600–607. https://doi.org/10.1248/cpb.c14-00169

Pachali, S., Hofmann, C., Rapp, G., Schobert, R., Baro, A., Frey, W., Laschat, S., 2009.

Stereoselective Synthesis of (2 E ,4 Z )-Dienamides Employing

(Triphenylphosphoranylidene)ketene. European J. Org. Chem. 2009, 2828–2835.

https://doi.org/10.1002/ejoc.200900176

Parry, G., Delbarre, A., Marchant, A., Swarup, R., Napier, R., Perrot-Rechenmann, C.,

Bennett, M. J. 2001. Novel auxin transport inhibitors phenocopy the auxin influx

carrier mutation aux1. Plant J. 25, 399-406.

Plevová, K., Chang, L., Martin, E., Llopis, Q., Dechoux, L., Thorimbert, S., 2016.

Regio- and Stereoselective Preparation of β,γ-Unsaturated Carboxylic Acids by

One-Pot Sequential Double 1,6-Addition of Grignard Reagents to Methyl

Coumalate. Adv. Synth. Catal. 358, 3293–3297.

https://doi.org/10.1002/adsc.201600212

Rojas-Pierce, M., Titapiwatanakun, B., Sohn, E.J., Fang, F., Larive, C.K., Blakeslee, J.,

Cheng, Y., Cuttler, S., Peer, W.A., Murphy, A.S., Raikhel, N. V., 2007.

Arabidopsis P-Glycoprotein19 Participates in the Inhibition of Gravitropism by

Gravacin. Chem. Biol. 14, 1366–1376.

https://doi.org/10.1016/j.chembiol.2007.10.014

Sack, F.D., 1997. Plastids and gravitropic sensing. Planta 203, S63–S68.

22

https://doi.org/10.1007/PL00008116

Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K., Swarup, R., 2015. New insights

into root gravitropic signalling. J. Exp. Bot. 66, 2155–2165.

https://doi.org/10.1093/jxb/eru515

Schmidt, B., Kunz, O., 2012. One-Flask Tethered Ring Closing MetathesisElectrocyclic Ring Opening for the Highly Stereoselective Synthesis of Conjugated

Z/E-Dienes. European J. Org. Chem. 2012, 1008–1018.

https://doi.org/10.1002/ejoc.201101497

Schwuchow, J., Michalke, W., Hertel, R., 2001. An Auxin Transport Inhibitor Interferes

With Unicellular Gravitropism in Protonemata of the Moss Ceratodon purpureus.

Plant Biol. 3, 357–363. https://doi.org/10.1055/s-2001-16459

Soltani, Y., Wilkins, L.C., Melen, R.L., 2017. Stoichiometric and Catalytic C−C and

C−H Bond Formation with B(C 6 F 5 ) 3 via Cationic Intermediates. Angew.

Chemie Int. Ed. 56, 11995–11999. https://doi.org/10.1002/anie.201704789

Steenackers, W., Klíma, P., Quareshy, M., Cesarino, I., Kumpf, R.P., Corneillie, S.,

Araújo, P., Viaene, T., Goeminne, G., Nowack, M.K., Ljung, K., Friml, J.,

Blakeslee, J.J., Novák, O., Zažímalová, E., Napier, R., Boerjan, W., Vanholme, B.,

2017. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes

Lateral Root Formation. Plant Physiol. 173, 552–565.

https://doi.org/10.1104/pp.16.00943

Su, S.H., Gibbs, N.M., Jancewicz, A.L., Masson, P.H., 2017. Molecular Mechanisms of

Root Gravitropism. Curr. Biol. 27, R964–R972.

https://doi.org/10.1016/j.cub.2017.07.015

Surpin, M., Rojas-Pierce, M., Carter, C., Hicks, G.R., Vasquez, J., Raikhel, N. V, 2005.

23

The power of chemical genomics to study the link between endomembrane system

components and the gravitropic response. Proc. Natl. Acad. Sci. 102, 4902–4907.

https://doi.org/10.1073/pnas.0500222102

Takeuchi, R., Tanabe, K., Tanaka, S., 2000. Stereodivergent Synthesis of ( E )- and

( Z )-2-Alken-4-yn-1-ols from 2-Propynoic Acid: A Practical Route via 2-Alken-4ynoates. J. Org. Chem. 65, 1558–1561. https://doi.org/10.1021/jo991350a

Tsuda, E., Yang, H., Nishimura, T., Uehara, Y., Sakai, T., Furutani, M., Koshiba, T.,

Hirose, M., Nozaki, H., Murphy, A.S., Hayashi, K.I., 2011. Alkoxy-auxins are

selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1

transporters. J. Biol. Chem. 286, 2354–2364.

https://doi.org/10.1074/jbc.M110.171165

Tsugafune, S., Mashiguchi, K., Fukui, K., Takebayashi, Y., Nishimura, T., Sakai, T.,

Shimada, Y., Kasahara, H., Koshiba, T., Hayashi, K., 2017. Yucasin DF, a potent

and persistent inhibitor of auxin biosynthesis in plants. Sci. Rep. 7, 13992.

https://doi.org/10.1038/s41598-017-14332-w

Ugochukwu, E.N., Wain, R.L., 1968. Studies on plant growth-regulating substances

XXV. The plant growth-regulating activity of cinnamic acids. Ann. Appl. Biol. 61,

121–130. https://doi.org/10.1111/j.1744-7348.1968.tb04515.x

Went, F.W., 1935. Auxin, the plant growth-hormone. Bot. Rev. 1, 162–182.

https://doi.org/10.1007/BF02870150

Yan, Z., Wang, D., Cui, H., Sun, Y., Yang, X., Jin, H., Zhao, Y., Li, X., Xie, M., Liu, J.,

Qin, B., 2018. Effects of artemisinin on root gravitropic response and root system

development in Arabidopsis thaliana. Plant Growth Regul. 85, 211–220.

https://doi.org/10.1007/s10725-018-0384-6

24

Yang, X.X., Choi, H.W., Yang, S.F., Li, N., 1999. A UV-light activated cinnamic acid

isomer regulates plant growth and gravitropism via an ethylene receptorindependent pathway. Aust. J. Plant Physiol. 26, 325.

https://doi.org/10.1071/PP99007

Yang, Y., Hammes, U.Z., Taylor, C.G., Schachtman, D.P., Nielsen, E. 2006. Highaffinity auxin transport by the AUX1 influx carrier protein. Curr. Biol. 16, 11231127. https://doi.org/10.1016/j.cub.2006.04.029

Yoshida, M., Otaka, H., Doi, T., 2014. An Efficient Partial Reduction of α,βUnsaturated Esters Using DIBAL-H in Flow. European J. Org. Chem. 2014, 6010–

6016. https://doi.org/10.1002/ejoc.201402675

25

Figure legends

Fig. 1. Examples of compounds having gravitropic inhibitory activity.

Fig. 2. Lead compound, ku-76

Fig. 3. Evaluation method for inhibitory activity against root gravitropic bending. Gravity

vectors before (g1) and after (g2) reorientation are indicated. The length (l, cm) of the

root length and the angle ( degree) of the curvature after reorientation were measured.

The figure represents the lettuce seeding (mock treated).

Fig. 4 Inhibition tests of gravitropic bending at various concentrations of ku-76 ((a)

control, (b) [ku-76]; A: 10 M, B: 5 M, C: 1 M), (c) Effect of ku-76 on gravitropism,

(d) elongation. Data represent mean ± SD. Asterisk indicates statistically significant

differences between treatments and control at p < 0.05 (Welch t-test, n = 7).

Fig. 5. Three functional units for SAR study of ku-76.

Fig. 6. Structures of the analogues of ku-76.

Fig. 7. Inhibitory activity tests of gravitropic bending and elongation for skeletal

analogues (50 M except for ku-76 (10 M). Data for (A) gravitropic bending and (B)

elongation represent mean ± SD. Asterisk indicates statistically significant differences

between treatments and control at p < 0.05 (Welch t-test, n = 7)

26

Fig. 8. Inhibitory activity tests for amide, alcohol, ester analogues (50 M). Data of (A)

gravitropic bending and (B) elongation represent mean ± SD. Asterisk indicates

statistically significant differences between treatments and control at p < 0.05 (Welch ttest, n = 7)

Fig. 9. Essential structural features of ku-76 in root gravitropic bending tests.

27

Fig. 1

Fig. 2

Fig. 3

28

Fig. 4

29

Fig. 5

Fig 6

30

Fig 7

31

Fig 8

32

Fig 9

33

34

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る