リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Optimization and Hole Interpolation of 2-D Sparse Arrays for Accurate Direction-of-Arrival Estimation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Optimization and Hole Interpolation of 2-D Sparse Arrays for Accurate Direction-of-Arrival Estimation

Nakamura Shogo 50212098 Iwazaki Sho Ichige Koichi 10313470 横浜国立大学

2021.04.01

概要

This paper presents a method to optimize 2-D sparse ar- ray configurations along with a technique to interpolate holes to accurately estimate the direction of arrival (DOA). Conventional 2-D sparse arrays are often defined using a closed-form representation and have the property that they can create hole-free difference co-arrays that can estimate DOAs of incident signals that outnumber the physical elements. However, this prop- erty restricts the array configuration to a limited structure and results in a significant mutual coupling effect between consecutive sensors. In this pa- per, we introduce an optimization-based method for designing 2-D sparse arrays that enhances flexibility of array configuration as well as DOA es- timation accuracy. We also propose a method to interpolate holes in 2-D co-arrays by nuclear norm minimization (NNM) that permits holes and to extend array aperture to further enhance DOA estimation accuracy. The performance of the proposed optimum arrays is evaluated through numeri- cal examples.

参考文献

[1] M.I. Skolnik, Introduction to Radar Systems, 3rd ed., McGraw-Hill, 2002.

[2] H.L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, Wiley, 2002.

[3] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust., Speech, Sig- nal Process., vol.37, no.7, pp.984–995, July 1989.

[4] R.O. Schmidt, “Multiple emitter location and signal parameter esti- mation,” IEEE Trans. Antennas Propag., vol.34, no.3, pp.276–280, March 1986.

[5] T.E. Tuncer and B. Friedlander, Classical and Modern Direction of Arrival Estimation, Academic Press, 2009.

[6] S. Haykin, Array Signal Processing, Prentice-Hall, 1984.

[7] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. An- tennas Propag., vol.16, no.2, pp.172–175, March 1968.

[8] Y. Iizuka and K. Ichige, “Optimum linear array geometry for 2q-th order cumulant based array processing,” Proc. Int. Workshop. Com- pressed Sensing and its application to Radar, Multimodal Sensing, and Imaging, pp.198–201, May 2016.

[9] S. Iwazaki and K. Ichige, “Underdetermined direction of arrival estimation by sum and difference composite co-array,” Proc. 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp.669–672, Dec. 2018.

[10] S. Iwazaki and K. Ichige, “Extended beamforming by sum and dif- ference composite co-array for real-valued signals,” IEICE Trans. Fundamentals, vol.E102-A, no.7, pp.918–925, July 2019.

[11] S. Iwazaki, S. Nakamura, and K. Ichige, “DOA-based weighted spa- tial filter design for sum and difference composite co-array,” IEICE Trans. Commun., vol.E103-B, no.10, pp.1147–1154, Oct. 2020.

[12] P. Pal and P.P. Vaidyanathan, “Nested arrays in two dimensions, Part II: Application in two dimensional array processing,” IEEE Trans. Signal Process., vol.60, no.9, pp.4706–4718, Sept. 2012.

[13] P. Pal and P.P. Vaidyanathan, “Array design,” Bull Seismol. Soc. Amer., vol.58, no.3, pp.977–991, June 1968.

[14] W. Ma, T. Hsieh, and C. Chi, “DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach,” IEEE Trans. Signal Process., vol.58, no.4, pp.2168–2180, April 2010.

[15] P. Chevalier, L. Albera, A. Ferreol, and P. Comon, “On the virtual array concept for higher order array processing,” IEEE Trans. Signal Process., vol.53, no.4, pp.1254–1271, April 2005.

[16] C.A. Balanis, Antenna Theory: Analysis and Design, 4th ed., Wiley, 2016.

[17] B. Friedlander and A. Weiss, “Direction finding in the presence of mutual coupling,” IEEE Trans. Antennas Propag., vol.39, no.3, pp.273–284, March 1991.

[18] C.L. Liu and P.P. Vaidyanathan, “Hourglass arrays and other novel 2D sparse arrays with reduced mutual coupling,” IEEE Trans. Signal Process., vol.65, no.13, pp.3369–3383, July 2017.

[19] C.L. Liu and P.P. Vaidyanathan, “Two-dimensional sparse arrays with hole-free coarray and reduced mutual coupling,” Proc. IEEE Asilomar Conf. Signal, Syst., Comput., pp.1508–1512, 2016.

[20] C.L. Liu and P.P. Vaidyanathan, “Coprime coarray interpolation for DOA estimation via nuclear norm minimization,” Proc. IEEE Int. Sympo. Circuit and Systems, pp.2369–2642, May 2016.

[21] S. Nakamura, S. Iwazaki, and K. Ichige, “An optimum 2D sparse ar- ray configuration with reduced mutual coupling,” Proc. Int. Sympo. Antennas and Propagation, pp.617–618, Oct. 2018.

[22] S. Nakamura, S. Iwazaki, and K. Ichige, “Optimum 2D sparse ar- ray and its interpolation via nuclear norm minimization,” Proc. Int. Sympo. Circuits and Systems, pp.1–5, May 2019.

[23] S. Nakamura, S. Iwazaki, and K. Ichige, “Extended beamforming by optimum 2-D sparse arrays,” IEICE Communication Express, vol.9, no.6, pp.200–206, June 2020.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る