リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oocyte-derived growth factors promote development of antrum-like structures by porcine cumulus granulosa cells in vitro」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oocyte-derived growth factors promote development of antrum-like structures by porcine cumulus granulosa cells in vitro

Morikawa, Riho Kyogoku, Hirohisa Lee, Jibak Miyano, Takashi 神戸大学

2022

概要

Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte–cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles (1.2–1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0–100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by 8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.

この論文で使われている画像

参考文献

1. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals.

Reproduction 2001; 122: 829–838. [Medline] [CrossRef]

2. Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol

Reprod 2015; 92: 23. [Medline] [CrossRef]

3. Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes determine cumulus cell lineage in mouse

ovarian follicles. J Cell Sci 2007; 120: 1330–1340. [Medline] [CrossRef]

4. Baird DT, Fraser IS. Disorders of the hypothalamic-pituitary-ovarian axis. Clin Endocrinol Metab 1973; 2: 469–488. [Medline] [CrossRef]

5. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev 1994; 15:

725–751. [Medline] [CrossRef]

6. Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for

ovarian follicle maturation but not male fertility. Nat Genet 1997; 15: 201–204. [Medline]

[CrossRef]

7. Gilchrist RB, Ritter LJ, Myllymaa S, Kaivo-Oja N, Dragovic RA, Hickey TE, Ritvos

O, Mottershead DG. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J Cell Sci 2006; 119: 3811–3821. [Medline] [CrossRef]

8. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996; 383:

531–535. [Medline] [CrossRef]

9. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS,

McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Ritvos

O. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation

rate and infertility in a dosage-sensitive manner. Nat Genet 2000; 25: 279–283. [Medline]

[CrossRef]

10. Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS,

Dunbar BS, Dube JL, Celeste AJ, Matzuk MM. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol

2001; 15: 854–866. [Medline] [CrossRef]

11. Qin Y, Tang T, Li W, Liu Z, Yang X, Shi X, Sun G, Liu X, Wang M, Liang X, Cong P,

Mo D, Liu X, Chen Y, He Z. Bone morphogenetic protein 15 knockdown inhibits porcine

ovarian follicular development and ovulation. Front Cell Dev Biol 2019; 7: 286. [Medline]

[CrossRef]

12. Vitt UA, Hayashi M, Klein C, Hsueh AJW. Growth differentiation factor-9 stimulates

proliferation but suppresses the follicle-stimulating hormone-induced differentiation of

cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 2000;

62: 370–377. [Medline] [CrossRef]

13. Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic

protein-15. Identification of target cells and biological functions. J Biol Chem 2000; 275:

39523–39528. [Medline] [CrossRef]

14. Nilsson EE, Skinner MK. Growth and differentiation factor-9 stimulates progression of

early primary but not primordial rat ovarian follicle development. Biol Reprod 2002; 67:

1018–1024. [Medline] [CrossRef]

15. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth

differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 2002; 87: 316–321. [Medline]

[CrossRef]

16. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in

the mammalian ovary: oocytes carry the conversation. Science 2002; 296: 2178–2180.

[Medline] [CrossRef]

17. Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod 2010; 82: 1021–1029. [Medline] [CrossRef]

18. Shen X, Miyano T, Kato S. Promotion of follicular antrum formation by pig oocytes in

vitro. Zygote 1998; 6: 47–54. [Medline] [CrossRef]

19. Hirao Y. Conditions affecting growth and developmental competence of mammalian

oocytes in vitro. Anim Sci J 2011; 82: 187–197. [Medline] [CrossRef]

20. Alam MH, Lee J, Miyano T. GDF9 and BMP15 induce development of antrum-like

structures by bovine granulosa cells without oocytes. J Reprod Dev 2018; 64: 423–431.

[Medline] [CrossRef]

21. Hickey TE, Marrocco DL, Amato F, Ritter LJ, Norman RJ, Gilchrist RB, Armstrong

DT. Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol Reprod 2005; 73: 825–832. [Medline]

[CrossRef]

22. Wang XL, Wang K, Zhao S, Wu Y, Gao H, Zeng SM. Oocyte-secreted growth differentiation factor 9 inhibits BCL-2-interacting mediator of cell death-extra long expression in

porcine cumulus cell. Biol Reprod 2013; 89: 56. [Medline] [CrossRef]

23. Zhai B, Liu H, Li X, Dai L, Gao Y, Li C, Zhang L, Ding Y, Yu X, Zhang J. BMP15

prevents cumulus cell apoptosis through CCL2 and FBN1 in porcine ovaries. Cell Physiol

Biochem 2013; 32: 264–278. [Medline] [CrossRef]

24. Morikawa R, Lee J, Miyano T. Effects of oocyte-derived growth factors on the growth

of porcine oocytes and oocyte-cumulus cell complexes in vitro. J Reprod Dev 2021; 67:

273–281. [Medline] [CrossRef]

25. Loosfelt H, Misrahi M, Atger M, Salesse R, Vu Hai-Luu Thi MT, Jolivet A, Guiochon-Mantel A, Sar S, Jallal B, Garnier J, Milgrom E. Cloning and sequencing of

porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science 1989;

245: 525–528. [Medline] [CrossRef]

26. Mottershead DG, Sugimura S, Al-Musawi SL, Li JJ, Richani D, White MA, Martin

GA, Trotta AP, Ritter LJ, Shi J, Mueller TD, Harrison CA, Gilchrist RB. Cumulin, an

oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality. J Biol Chem 2015; 290: 24007–24020.

[Medline] [CrossRef]

27. Amsterdam A, Koch Y, Lieberman ME, Lindner HR. Distribution of binding sites for

human chorionic gonadotropin in the preovulatory follicle of the rat. J Cell Biol 1975; 67:

894–900. [Medline] [CrossRef]

28. Channing CP, Bae IH, Stone SL, Anderson LD, Edelson S, Fowler SC. Porcine granulosa and cumulus cell properties. LH/hCG receptors, ability to secrete progesterone and

ability to respond to LH. Mol Cell Endocrinol 1981; 22: 359–370. [Medline] [CrossRef]

29. Meduri G, Vuhai-Luuthi MT, Jolivet A, Milgrom E. New functional zonation in the

GDF9 AND BMP15 PROMOTE ANTRUM FORMATION

ovary as shown by immunohistochemistry of luteinizing hormone receptor. Endocrinology 1992; 131: 366–373. [Medline] [CrossRef]

30. Eppig JJ, Wigglesworth K, Pendola F, Hirao Y. Murine oocytes suppress expression of

luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod

245

1997; 56: 976–984. [Medline] [CrossRef]

31. El-Hayek S, Yang Q, Abbassi L, FitzHarris G, Clarke HJ. Mammalian oocytes locally

remodel follicular architecture to provide the foundation for germline-soma communication. Curr Biol 2018; 28: 1124–1131.e3. [Medline] [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る