リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「コムギのコムギいもち病菌に対する抵抗性遺伝子Rmg8 とRmgGR119の有効性と持続性」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

コムギのコムギいもち病菌に対する抵抗性遺伝子Rmg8 とRmgGR119の有効性と持続性

Horo, Jemal Tola ホロ, ジェマル トラ 神戸大学

2020.09.25

概要

Wheat blast (Pyricularia oryzae) is a relatively new disease which first emerged in Brazil in 1985. In 2016 an outbreak of this disease occurred in Bangladesh and gave a severe damage on wheat production. To control this disease, the use of host resistance is the best option, but available resistance genes are limited. In our laboratory, two promising resistance genes have been identified in common wheat, i.e., Rmg8 and RmgGR119. The objective of this study was to evaluate the effectiveness and durability of Rmg8 and RmgGR119.

 Eighteen wheat lines carrying Rmg8 and an accession (GR119) carrying Rmg8 and RmgGR119 were inoculated with eight Bangladeshi isolates (T-102 through T-109) and two Brazilian isolates (Br48 and Br5). At 22oC and 25oC, they were resistant to all Bangladeshi and Brazilian isolates. However, further investigation at higher temperatures with intact and detached primary or third leaves revealed that these isolates were divided into two groups. Group A consisting of a Brazilian isolate (Br48) and Bangladeshi isolates showed an entirely avirulent reaction, while Group B consisting Br5 and Br116.5 produced brown flecks accompanied by tissue browning. Group A harbored the eI type of AVR-Rmg8 (the avirulence gene corresponding to Rmg8), which was 100% identical to that of Br48, while Group B harbored the eII and eII’ types of AVR-Rmg8. Sequence analyses of our Bangladesh isolates and whole genome sequences in the database revealed that all Bangladeshi isolates exclusively harbored the eI type.

 To examine if the difference of the A and B groups in the virulence on wheat was attributable to the types of AVR-Rmg8 they harbored, the three types of AVR-Rmg8 were cloned and transformed into Br48∆A8 (disruptant of AVR-Rmg8). The resulting transformants were sprayed to seedlings and spikes of common wheat cv. Hope (-/-), accession IL191 (Rmg8/-), and GR119 (Rmg8/RmgGR119). At the seedling stage IL191 was highly resistant to transformants with the eI type but moderately resistant to those with the eII and eII’ types. At the heading stage IL191 was highly resistant to the transformants with the eI type but susceptible to those with the eII and eII’ types. These results suggest that the different reactions are attributed to the difference of AVR-Rmg8 alleles. GR119 carrying Rmg8 and RmgGR119 was resistant to the transformants with all types of AVR-Rmg8, even at high temperatures.

 Distribution of AVR-Rmg8 was further surveyed using isolates from various hosts. Southern blot and sequence analyses revealed that AVR-Rmg8 was widely distributed in the Triticum, Lolium, and Avena isolates, but lacking in the isolates collected from Leersia sp., Cenchus sp., Digitaria sp. and Sasa sp. hosts.

 Taken together, I conclude that Rmg8 and probably, RmgGR119 are effective against P. oryzae in Bangladesh.

この論文で使われている画像

参考文献

Agrios, G. N. 2005. Plant pathology: Fifth edition. Elsevier Inc., 922pp

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. Z., Miller, W. and Lipman, D. J. 1997. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.

Anh, V. L. 2016. Identification of a resistance gene against the wheat blast fungus in common wheat and cloning of its corresponding avirulence gene. Ph.D thesis, Kobe University.

Anh, V. L., Anh, N. T., Tagle, A. G., Vy, T. T. P., Inoue, Y., Takumi, S., et al. 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105: 1568-1572.

Anh, V. L., Inoue, Y., Asuke, S., Vy, T. T. P., Anh, N. T., Wang, S., et al. 2018. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Molecular Plant Pathology 19: 1252–1256.

Asuke, S., Tanaka, M., Hyon, G., Inoue, Y., Thi, T., Vy, P., et al. 2020. Evolution of an Eleusine -specific subgroup of Pyricularia oryzae through a gain of an avirulence gene. Molecular Plant-Microbe Interactions 33: 153-165.

Callaway E. 2016. Devastating wheat fungus appears in Asia for first time. Nature 532: 421– 422.

Castroagudín, V. L., Moreira, S. I. S., Pereira, D. A. S., Moreira, S. I. S., Brunner, P. C., Maciel, J. L. N., et al. 2016. Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Persoonia: Molecular Phylogeny and Evolution of Fungi 37: 199– 216.

Castroagudín,V. L., Danelli, A. L. D., Moreira, S. I., Reges, J. T. A., McDonald, G. C., Maciel, J. L.N., et al. 2017. The wheat blast pathogen Pyricularia graminis-tritici has complex origins and a disease cycle spanning multiple grass hosts. BioRxiv preprint.

Ceresini, P. C., Castroagudín, V. L., Rodrigues, F. Á., Rios, J. A., Eduardo A. C., Moreira, S. I., et al. 2018. Wheat blast: past, present, and future. Annu. Rev. Phytopathol. 56: 427– 456.

Chiapello, H., Mallet, L., Guérin, C., Aguileta, G., Amselem, J., Kroj, T. 2015. Deciphering genome content and evolutionary relationships of isolates from the fungus Magnaporthe oryzae attacking different host plants. Genome Biology and Evolution 7: 2896–2912.

Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., et al. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathogens 7: e1002147.

CIMMYT 2010. First international wheat blast meeting held in Brazil, 2pp. Retrieved from https://www.cimmyt.org/news/first-international-wheat-blast-meeting-held-in-brazil, (Accessed 21 April 2020).

CIMMYT 2016. Understanding and managing the threat of wheat blast in South Asia, South America , and beyond, 4. Retrieved from https://repository.cimmyt.org/bitstream/handle/10883/16947/57941.pdf?sequence=1&isAllowed=y, (Accessed 11 May 2020).

Cribb J. 2010. The coming famine: The global food crisis and what we can do to avoid it. Barkeley: University of California Press 248pp.

Cruppe, G., Cruz, C. D., Peterson, G., Pedley, K., Asif, M., Fritz, A., et al. 2020. Novel sources of wheat head blast resistance in modern breeding lines and wheat wild relatives. Plant Disease 104: 35-43.

Cruz, C. D., Peterson, G. L., Bockus, W. W., Kankanala, P., Dubcovsky, J., Jordan, K. W., et al. 2016. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Science 56: 990-1000.

Cruz, C. D., and Valent, B. 2017. Wheat blast disease: danger on the move. Tropical Plant Pathology 42: 210–222.

De Silva, N. I., Lumyong, S., Hyde, K. D., Bulgakov, T., Phillips, A. J. L., Yan J. Y. 2016. Mycosphere Essay 9: Defining biotrophs and hemibiotrophs. Mycosphere 7: 545-559.

Dickinson, M. 2003. Molecular plant pathology. BIOS Scientific Publisher, Taylor & Francis Group, London and New York, 273pp.

Duba, A., Goriewa-Duba, K., and Wachowska, U. 2018. A review of the interactions between wheat and wheat pathogens: Zymoseptoria tritici, Fusarium spp., and Parastagonospora nodorum. International Journal of Molecular Sciences 19: 1138.

Dufresne, M., and Daboussi, M. J. 2010. Development of impala-based transposon systems for gene tagging in filamentous fungi. In A. Sharon (Ed.), Springer, Dordrecht, New York: Humana Press 41–54 pp.

FAO 2009. 2050: A third more mouths to feed. 5pp. Retrieved from http://www.fao.org/ news/story/en/item/35571/icode/, (Accessed 14 January 2020).

Farman, M., Peterson, G., Chen, L., Starnes, J., Valent, B., Bachi, P., et al. 2017. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Disease 101: 684–692.

Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194.

Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 275– 296.

Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., Nhani, A., et al. 2018. Gene flow between divergent cereal and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. MBio 9:1–19.

Goerner-Potvin, P., and Bourque, G. 2018. Computational tools to unmask transposable elements. Nature Reviews Genetics 19: 688–704.

Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., et al. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357: 80–83.

Islam, M. T., Croll, D., Gladieux, P., Soanes, D. M., Persoons, A., Bhattacharjee, P., et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology 14: 1–11.

Islam, M. T., Kim, K. H., and Choi, J. 2019. Wheat blast in Bangladesh: The current situation and future impacts. Plant Pathology Journal 35: 1–10.

Jensen, C., Tosa, Y., Islam, T., Talbot, N. J., Kamoun, S.,and Saunders, D. G. O. 2019. Rmg8 confers resistance to the Bangladeshi lineage of the wheat blast fungus. Zenodo, 4–5 Jiang, Y., · Asuke, S.,· Vy, T. T. P., Inoue, Y., and · Tosa, Y. 2020. Evaluation of durability of blast resistance gene Rmg8 in common wheat based on analyses of its corresponding avirulence gene. Journal of General Plant Pathology (In press).

Hyon, G.-S., Nga, N. T. T., Chuma, I., Inoue, Y., Asano, H., Murata, N., et al. 2012. Characterization of interactions between barley and various host-specific subgroups of Magnaporthe oryzae and M. grisea. Journal of General Plant Pathology 78: 237-246.

Kamoun, S., Talbot, N. J., and Tofazzal Islam, M. 2019. Plant health emergencies demand open science: Tackling a cereal killer on the run. PLoS Biology 17: 1–6.

Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., et al. 2000. Pathogenicity, Mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae Plants. J. Gen. Plant Pathol. 66: 30–47.

Kemen, E. and Jones, J. D. G. 2012. Obligate biotroph parasitism: can we link genomes to lifestyles? Trends in Plant Science 17: 448-457.

Kennelly, M., O’Mara, J., Rivard, C., Miller, G. L., and Smith, D. 2012. Introduction to abiotic disorders in plants. The Plant Health Instructor 42: 142–145.

Kim, Y.-J., Lee, J., and Han, K. 2012. Transposable Elements: No More ‘Junk DNA.’ Genomics and Informatics 10: 226 – 233.

Koeck, M., Hardham, A.R., and Dodds, P.N. 2011. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiology 13: 1849-1857.

Kohli, M. M., Mehta, Y. R., Guzman, E., de Viedma, L., Cubilla, L. E., Islam, M. T., et al. 2011. Pyricularia blast – a threat to wheat cultivation. Czech Journal of Genetics and Plant Breeding 47: 130–134.

Koizumi S., Ashizawa T., Zenbayashi K.S. 2004. Durable control of rice blast disease with multilines. In: Kawasaki S. (eds) Rice Blast: Interaction with rice and control. Springer, Dordrecht 191 – 199.

Kumar, I. S., Amran, N. A., and Nadarajah, K. 2018. In silico analysis of qBFR4 and qLBL5 in conferring quantitative resistance against rice blast. Journal of Pure and Applied Microbiology 12: 1703–1718.

Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870– 1874.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

Maciel, J. L. N., Ceresini, P. C., Castroagudin, V. L., Zala, M., Kema, G. H. J., and McDonald, B. A. 2014. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104: 95–107.

Malaker P. K., Barma N. C. D., Tiwari T. P., Collis W. J., Duveiller E., Singh P. K., et al. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype Triticum in Bangladesh. Plant Dis 100:2330.

Murakami, J., Tosa, Y., Kataoka, T., Tomita, R., Kawasaki, J., Chuma, I., et al. 2000. Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology 90: 1060-1067.

Nakayashiki, H., Kiyotomi, K., Tosa, Y., and Mayama, S. 1999. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 153: 693–703.

Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y., et al. 2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact. 14:580-584.

Nei, M., and Gojoborit, T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3: 418– 426.

Nelson, R., Wiesner-Hanks, T., Wisser, R., and Balint-Kurti, P. 2018. Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics 19: 21–33.

Nga, N. T., Hau, V. T., and Tosa, Y. 2009. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52: 801- 809.

O’Leary, M. 2020. Blast and rust forecast: New project to deliver wheat disease warnings directly to farmers’ phones in Bangladesh and Nepal . CIMMYT. Retrieved from https://www.cimmyt.org/news/blast-and-rust-forecast/, (Accessed 7 June 2020).

Pennisi, E. 2010. Armed and dangerous. Science 327: 804–805.

Pieck, M. L., Ruck, A., Farman, M. L., Peterson, G. L., Stack, J. P., Valent, B., et al. 2017. Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Disease 101: 103–109.

Pray, L. A. 2008. Transposons: The jumping genes. Nature Education, 1: 204. Retrieved from http://www.nature.com/scitable/topicpage/transposons-the-jumping-genes-518, (Accessed 13 May 2020).

Randhawa, M. S., Bhavani, S., Singh, P. K., Huerta-Espino, J., and Singh, R. P. 2019. Disease resistance in wheat: present status and future prospects. In Disease Resistance in Crop Plants. Cham: Springer International Publishing 61–81.

Seidl, M. F., and Thomma, B. P. H. J. 2017. Transposable elements direct the coevolution between plants and microbes. Trends in Genetics 33: 842–851.

Singh, R. P., Singh, P. K., Rutkoski, J., Hodson, D. P., He, X., Jørgensen, L. N., et al. 2016. Disease impact on wheat yield potential and prospects of genetic control. Annual Review of Phytopathology 54: 303–322.

Tagle, A. G., Chuma, I., and Tosa, Y. 2015. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105: 495- 499.

Takabayashi, N., Tosa, Y., Oh, H. S., and Mayama, S. 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92: 1182-1188.

Tosa, Y., and Chuma, I. 2014. Classification and parasitic specialization of blast fungi. J. Gen. Plant Pathol. 80: 202-209.

Tosa, Y., Osue, J., Eto, Y., Oh, H. S., Nakayashiki, H., Mayama, S., et al. 2005. Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae. Mol. Plant-Microbe Interact 18:1148-1160.

Ugalde, D., Brungs, A., Kaebernick, M., Mcgregor, A., and Slattery, B. 2007. Implications of climate change for tillage practice in Australia 97: 318–330.

Urashima, A. S., Hashimoto, Y., Don, L. D., Kusaba, M., Tosa, Y., Nakayashiki, et al. 1999. Molecular Analysis of the Wheat Blast Population in Brazil with a Homolog of Retrotransposon MGR583. Japanese Journal of Phytopathology 65: 429–436.

Urashima, A. S., Lavorent, N. A., Goulart, A. C. P., and Mehta, Y. R. 2004. Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatologia Brasileira, 29: 511–518.

Vy, T. T. P. 2013. Genetic and molecular mechanisms of the evolution of wheat blast fungus from its relatives, Ph.D thesis, Kobe University.

Wang, S., Asuke, S., Vy, T. T. P., Inoue, Y., Chuma, I., Win, J., et al. 2018. A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology 108: 1299–1306.

Widmar, D. 2017. Trends in global wheat production change in acres. Agricultural Economics Insight, Aei, 1–6. Retrieved from https://aei.ag/2017/10/23/trends-global-wheat-production, (Accessed 2 June 2020).

Yasuda, N., Mitsunaga, T., Hayashi, K., Koizumi, S., & Fujita, Y. (2015). Effects of pyramiding quantitative resistance genes pi21, Pi34, and Pi35 on rice leaf blast disease. Plant Disease, 99: 904–909.

Yoshida, K., Saunders, D. G. O., Mitsuoka, C., Natsume, S., Kosugi, S., Saitoh, H., et al. 2016. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics 17: 1– 18.

Zhan, S. W., Mayama, S., and Tosa, Y. 2008. Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat Genome 51: 216–221.

Zhang, N., Luo, J., Rossman, A. Y., Aoki, T., Chuma, I., Crous, P. W., et al. (2016). Generic names in Magnaporthales. IMA Fungus 7: 155–159.

Zhong, Z., Norvienyeku, J., Chen, M., Bao, J., Lin, L., Chen, L., et al. 2016. Directional selection from host plants is a major force driving host specificity in Magnaporthe species. Scientific Reports 6: 1–13.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る