リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dynamic interactions in the l-lactate oxidase active site facilitate substrate binding at pH4.5」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dynamic interactions in the l-lactate oxidase active site facilitate substrate binding at pH4.5

Furubayashi, Naoki Inaka, Koji Kamo, Masayuki Umena, Yasufumi Matsuoka, Takeshi Morimoto, Yukio 京都大学 DOI:10.1016/j.bbrc.2021.06.078

2021.09

概要

The crystal structure of l-lactate oxidase in complex with l-lactate was solved at a 1.33 Å resolution. The electron density of the bound l-lactate was clearly shown and comparisons of the free form and substrate bound complexes demonstrated that l-lactate was bound to the FMN and an additional active site within the enzyme complex. l-lactate interacted with the related side chains, which play an important role in enzymatic catalysis and especially the coupled movement of H265 and D174, which may be essential to activity. These observations not only reveal the enzymatic mechanism for l-lactate binding but also demonstrate the dynamic motion of these enzyme structures in response to substrate binding and enzymatic reaction progression.

この論文で使われている画像

参考文献

(1) Lockridge, O., Massey, V., Sullivan, P.A. (1972) Mechanism of action of the

flavoenzyme lactate oxidase. J Biol Chem. Dec 25;247(24):8097-106. PMID: 4640938.

(2) Farhana, A., Lappin, S.L. (2021) Biochemistry, Lactate Dehydrogenase. StatPearls

Publishing : https://www.ncbi.nlm.nih.gov/books/NBK557536/

(3) Alam, F., RoyChoudhury, S., Jalal, A.H., Umasankar, Y., Forouzanfar, S., Akter, N.,

Bhansali, S., Pala, N. (2018) Lactate biosensing: The emerging point-of-care and personal

health monitoring. Biosens Bioelectron. 2018 Oct 15;117:818-829. doi:

10.1016/j.bios.2018.06.054. Epub 2018 Jun 28. PMID: 30096736.

(4) Hiraka, K., Kojima, K., Lin, C.E., Tsugawa, W., Asano, R., La Belle, J.T., Sode, K.

(2018) Minimizing the effects of oxygen interference on l-lactate sensors by a single

amino acid mutation in Aerococcus viridansl-lactate oxidase. Biosens Bioelectron. 2018

Apr 30;103:163-170. doi: 10.1016/j.bios.2017.12.018. Epub 2017 Dec 14. PMID:

29279290.

(5) White, J.L., Hackert, M.L., Buehner, M., Adams, M.J., Ford, G.C., Lentz, P.J.,

Smiley, I. E., Steindel, S. J., Rossmann, M.G. (1976) A comparison of the structures of

apo dogfish M4 lactate dehydrogenase and its ternary complexes, J. Mol. Biol. 102, 759779, ISSN 0022-2836, https://doi.org/10.1016/0022-2836(76)90290-4.

(6) Umena, Y., Yorita, K., Matsuoka, T., Kita, A., Fukui, K., Morimoto, Y. (2006) The

crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1Å resolution reveals

the mechanism of strict substrate recognition. Biochem Biophys Res Commun. 350, 24956. doi: 10.1016/j.bbrc.2006.09.025. Epub 2006 Sep 18. PMID: 17007814.

(7) Li, S.J., Umena, Y., Yorita, K., Matsuoka, T., Kita, A., Fukui, K., Morimoto, Y. (2007)

Crystallographic study on the interaction of L-lactate oxidase with pyruvate at 1.9

Angstrom resolution. Biochem Biophys Res Commun. 358,

10.1016/j.bbrc.2007.05.021. Epub 2007 May 11. PMID: 17517371.

1002-7.

doi:

(8) Furuichi, M., Suzuki, N., Dhakshnamoorhty, B., Minagawa, H., Yamagishi, R.,

Watanabe, Y., Goto, Y., Kaneko, H., Yoshida, Y., Yagi, H., Waga, I., Kumar, P.K.,

Mizuno, H. (2008) X-ray structures of Aerococcus viridans lactate oxidase and its

10

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

complex with D-lactate at pH 4.5 show an alpha-hydroxyacid oxidation mechanism.

J. Mol. Biol. 378, 436-46. doi: 10.1016/j.jmb.2008.02.062. Epub 2008 Mar 3. PMID:

18367206

(9) Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora,

A., Sustr, V., Klvana, M., Medek, P., Biedermannova, L., Sochor, J., Damborsky, J. (2012)

CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures.

PLoS Comput Biol. 8, e1002708. doi: 10.1371/journal.pcbi.1002708. Epub 2012 Oct 18.

PMID: 23093919; PMCID: PMC3475669.

(10) Morimoto, Y., Yorita, K., Aki, K., Misaki, H., Massey, V. (1998) L-lactate oxidase

from Aerococcus viridans crystallized as an octamer. Preliminary X-ray studies.

Biochimie. Apr;80(4):309-12. doi: 10.1016/s0300-9084(98)80072-2. PMID: 9672750.

(11) Maeda-Yorita, K., Aki, K., Sagai, H., Misaki, H., Massey, V. (1995) L-Lactate

oxidase and L-lactate monooxygenase: mechanistic variations on a common structural

theme. Biochimie, 77, 631-642

(12) Yamashita, K., Hirata, K. & Yamamoto, M. (2018). Acta Cryst. D74, 441-449.

(13) Kabsch, W. (2010). Acta Cryst. D66, 125-132.

(14) Evans,P.R. (2011) An introduction to data reduction: space-group determination,

scaling and intensity statistics. Acta Cryst. D67, 282-292

(15) A.Vagin,A.Teplyakov,(1997) MOLREP: an automated program for molecular

replacement., J. Appl. Cryst. (1997) 30, 1022-1025.

(16) O.Kovalevskiy,O., Nicholls, R.A., Long, F., Murshudov, G.N. (2018) Overview of

refinement procedures within REFMAC5: utilizing data from different sources. Acta

Crystallogr. D74, 492-505

(17) Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126-2132.

(18) Schrödinger, L. &

http://www.pymol.org/pymol.

11

DeLano,

W.,

2020.

PyMOL,

Available

at:

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(19) Umena, Y., Yorita, K., Matsuoka, T., Abe, M., Kita, A., Fukui, K., Tsukihara, T.,

Morimoto, Y. (2005) Crystallization and preliminary X-ray diffraction study of L-lactate

oxidase (LOX), R181M mutant, from Aerococcus viridans. Acta Crystallogr Sect F. 61,

439-441. doi: 10.1107/S1744309105009152. Epub 2005 Apr 1. PMID: 16511063;

PMCID: PMC1952436.

12

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure Legends

Figure 1. Structures of the active site in FMN and the surrounding amino acid residues of

the L-lactate oxidase (LOX) in the presence of (a) acetic acid, (b) L-lactate, (c) D-lactate

or (d) pyruvate represented as stick models. Electron density maps are shown as a 2mFoDFc omit map at 3.0 s levels. Images were prepared using the PyMOL Molecular Graphic

System program.

Figure 2. Distances between the L-lactate and surrounding amino acid residues. Values

are designated using the angstrom unit and shown by the dotted line.

Figure 3. Molecular surfaces in the LOX as seen from the invading substrate; (a) substrate

FREE open form (b). In the magnified square in image (a) FMN can be seen in red and

acetic acid in cyan. (c) closed form of the L-lactate bound complex, areas highlighted in

magenta represent those in a new position when compared to the open (a) form. Images

represent a LOX dimer with the opposite molecule being the B-mol.

Figure 4. Coupled movements of the H265 and D174 residues near the FMN. (a) Substrate

FREE form, two amino acids far from the FMN si-side, (b) substrate bound closed form,

two coupled residues move toward FMN but retain a distance of 2.8 Å.

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

(c)

Fig.1 morimoto

(b)

(d)

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Y40

2.4

2.8

Y146

3.0

2.6

2.9

D174

Fig.2 morimoto

2.8

H265

2.9

3.0

R268

R181

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a)

Fig.3 morimoto

(b)

(c)

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

H265

H265

2.83

(a)

D174

Fig.4 morimoto

2.85

(b)

D174

...

参考文献をもっと見る