リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Human biomonitoring of phthalates and their effect on respiratory and allergic symptoms in Japanese children」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Human biomonitoring of phthalates and their effect on respiratory and allergic symptoms in Japanese children

KETEMA, Rahel Mesfin 北海道大学

2022.03.24

概要

Phthalates are ubiquitous environmental contaminants used in building materials as polyvinyl chloride materials, in food packing, toys, personal care products, etc. Previous studies have reported phthalates association with adverse health effects including respiratory and allergic symptoms. Moreover, children are more vulnerable than adults to phthalates exposure and health effect mainly due to children’s still developing organs and age-related behaviors. Previous epidemiological studies focused on examining individual phthalates exposure effect on respiratory and allergic symptoms. However, this approach has limitations as humans are exposed to several phthalates in their daily lives.
Thus, in this thesis, study 1 investigated the secular trend of five parent phthalates is using their metabolites in children aged 7 years old. In the study 2, associations of individual and mixture of phthalate metabolites with wheeze, rhino-conjunctivitis, and eczema symptoms in children and the hypothesis of mediating effect of oxidative stress in the association between phthalates and symptoms are examined.
From the ongoing Hokkaido birth cohort study, 400 first-morning spot urine samples collected from 2012 to 2017 of 7 years old children were included in this study. The ISAAC questionnaire completed by parents or guardians of the children was used to investigate demographic and allergic symptoms (wheeze, rhino-conjunctivitis, and eczema). (i) Ten urinary phthalate metabolites: MiBP, MnBP, MBzP, MEHP, MEOHP, MEHHP, MECPP, MiNP, OH-MiNP, and cx-MiNP concentrations were measured by UPLC-MS/MS, (ii) the levels of three oxidative stress biomarkers, 8-OHdG, HEL, and HNE were measured, (iii) statistical analysis, study 1: multivariable regression model was performed to assess the secular trend of metabolites from 2012-2017 and the association between phthalate metabolites and building characteristics. Study 2: Weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were used to investigate the association of individual and mixture effects of phthalate metabolites with health outcomes. Baron and Kenny’s regression approach was used to investigate the possible mediating effect of oxidative stress biomarkers on the association between phthalate exposure and health outcomes.

Study 1 results and discussion
All phthalate metabolites were detected in more than 96% of the children’s urine, indicating high detection frequency. High detection was observed in MECPP, MnBP and MEHHP with median concentrations of 37.4 ng/mL, 36.8 ng/mL and 25.8 ng/mL, respectively. Comparing phthalate metabolites levels in similar aged children with other countries, DEHP metabolites (MEHP, MEOHP, MEHHP, MECPP) were higher in Japanese children than children in the USA and Germany. On contrary, metabolites MiBP, MnBP, MBzP, MiNP, OH-MiNP and cx-MiNP were comparable or lower. A stable trend of phthalate metabolites was observed in children between 2012 and 2017. This stable or no change in phthalates exposure is despite the Japan’s revised 2010 phthalates regulation which is only enforced to children and food products. Thus, the stable trend could be an indication of phthalates exposure from non-regulated products such as PVC floor/wall materials, and personal care products such as lotions, shampoo. Considering personal and building characteristics; elevated levels of ∑DINP in children from low-income households, MnBP from those living in old buildings, and MiBP, MnBP, and ∑DEHP from those with window opening habits of ≥1 h.

Study 2 results and discussion
The individual linear regression analysis showed MECPP (OR = 1.41, 95% CI: 1.02–1.97) and cx-MiNP (OR = 1.40, 95% CI: 1.07–1.86) were associated with wheeze. In the mixture analysis the WQS index had a significant association (OR = 1.43, 95% CI: 1.07–1.91) with wheeze and (OR = 1.37, 95% CI: 1.01–1.87) with eczema for which MiNP and OH-MiNP, respectively, were the most highly weighted metabolites. Considering BKMR, DINP metabolites showed the highest group posterior inclusion probability (PIP). Among DINP metabolites, cx-MiNP with wheeze and eczema as well as OH-MiNP with rhino-conjunctivitis showed the highest conditional PIPs. The overall effect of phthalate metabolites mixture showed increasing association with eczema. These findings showed the association of individual and phthalate metabolites mixture with wheeze and eczema. More importantly, metabolites of DINP followed by DEHP are the main contributors to the associations. No mediation of oxidative stress in the association between phthalates and symptoms was observed, this could be attributed to low oxidative stress. Yet, as this study’s participants are only 7 years old the result may change when they get older.

In conclusion, this study revealed a stable trend of phthalate exposure from 2012 to 2017. The health assessment from different models emphasizes individual metabolites MECPP and cx-MiNP and mixture effect of DEHP and DINP metabolites are identified as the primary contributors to wheeze and eczema. In the future, trend biomonitoring of phthalates is important to surveil exposure level in different general population. More importantly, phthalates exposure may be associated with respiratory and allergic symptoms thus reduction of exposure level in children is warranted.

この論文で使われている画像

参考文献

1. Adeboye, N.O., Fagoyinbo, I. S., and Olatayo, T.O., 2014. Estimation of the Effectof Multicollinearity on the Standard Error for Regression Coefficients. IOSR-JM, Vol. 10; pp. 2278-2284.

2. Adgent, M.A., Carroll, K.N., Hazlehurst, M.F., Loftus, C.T., Szpiro, A.A., Karr, C.J., Barrett, E.S., LeWinn, K.Z., Bush, N.R., Tylavsky, F.A., Kannan, K., Sathyanarayana, S., 2020. A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma. Environ. Int. 143, 105970. https://doi.org/10.1016/j.envint.2020.105970.

3. Ait Bamai, Y., Araki, A., Kawai, T., Tsuboi, T., Saito, I., Yoshioka, E., Cong, S., Kishi, R.,2016. Exposure to phthalates in house dust and associated allergies in children aged 6–12years. Environ. Int. 96, 16–23. https://doi.org/10.1016/j.envint.2016.08.025.

4. Ait Bamai, Y., Araki, A., Kawai, T., Tsuboi, T., Saito, I., Yoshioka, E., Kanazawa, A.,Tajima, S., Shi, C., Tamakoshi, A., Kishi, R., 2014a. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Sci. Total Environ. 468–469, 147–157. https://doi.org/10.1016/j.scitotenv.2013.07.107.

5. Ait Bamai, Y., Araki, A., Kawai, T., Tsuboi, T., Yoshioka, E., Kanazawa, A., Cong, S., Kishi, R., 2015. Comparisons of urinary phthalate metabolites and daily phthalate intakes among Japanese families. Int. J. Hyg Environ. Health 218, 461–470. https://doi.org/10.1016/j.ijheh.2015.03.013.

6. Ait Bamai, Y., Araki, A., Nomura, T., Kawai, T., Tsuboi, T., Kobayashi, S., Miyashita, C., Takeda, M., Shimizu, H., Kishi, R., 2018. Association of filaggrin gene mutations and childhood eczema and wheeze with phthalates and phosphorus flame retardants in house dust: The Hokkaido study on Environment and Children’s Health. Environ. Int. 121, 102–110. https://doi.org/10.1016/j.envint.2018.08.046.

7. Ait Bamai, Y., Bastiaensen, M., Araki, A., Goudarzi, H., Konno, S., Ito, S., Miyashita, C., Yao, Y., Covaci, A., Kishi, R., 2019. Multiple exposures to organophosphate flame retardants alter urinary oxidative stress biomarkers among children: the Hokkaido Study. Environ. Int. 131, 105003. https://doi.org/10.1016/j.envint.2019.105003.

8. Ait Bamai, Y., Shibata, E., Saito, I., Araki, A., Kanazawa, A., Morimoto, K., Nakayama, K., Tanaka, M., Takigawa, T., Yoshimura, T., Chikara, H., Saijo, Y., Kishi, R., 2014b. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. Sci. Total Environ. 485–486C, 153–163. https://doi.org/10.1016/j.scitotenv.2014.03.059.

9. Ali, I., Nabih, E., Eltohami, A., 2018. Diagnosis of Asthma in Childhood Age. Arch Asthma Allergy Immunol. 2018; 2: 008-012. DOI: 10.29328/journal.aaai.1001012.

10. Andersen, C., Krais, A.M., Eriksson, A.C., Jakobsson, J., Londahl, ¨ J., Nielsen, J., Lindh, C. H., Pagels, J., Gudmundsson, A., Wierzbicka, A., 2018. Inhalation and dermal uptake of particle and gas-phase phthalates-A human exposure study, 2018 Nov 6 Environ. Sci. Technol. 52 (21), 12792–12800. https://doi.org/10.1021/acs.est.8b03761. Epub 2018 Oct 12. PMID: 30264993.

11. Anderson, W.A., Castle, L., Scotter, M.J., Massey, R.C., Springall, C., 2001. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit. Contam. 18, 1068–1074. https://doi.org/10.1080/02652030110050113.

12. Asher, M.I., Keil, U., Anderson, H.R., Beasley, R., Crane, J., Martinez, F., Mitchell, E.A., Pearce, N., Sibbald, B., Stewart, A.W., 1995. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur. Respir. J. 8, 483–491. https://doi.org/10.1183/09031936.95.08030483.

13. Baron, R.M., Kenny, D.A., 1986. The moderator mediator variable distinction in social psychological-research − conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182.

14. Becker, K., Goen, ¨ T., Seiwert, M., Conrad, A., Pick-Fuss, H., Müller, J., Wittassek, M., Schulz, C., Kolossa-Gehring, M., 2009. GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int. J. Hyg Environ. Health 212, 685–692. https://doi.org/10.1016/j.ijheh.2009.08.002.

15. Bhavsar, P., Khorasani, N., Hew, M., Johnson, M., Chung, K.F., 2010. Effect of p38 MAPK inhibition on corticosteroid suppression of cytokine release in severe asthma. Eur. Respir. J. 35, 750–756. https://doi.org/10.1183/09031936.00071309.

16. Bi, C., Maestre, J.P., Li, H., Zhang, G., Givehchi, R., Mahdavi, A., Kinney, K.A., Siegel, J., Horner, S.D., Xu, Y., 2018 Dec. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: association with season, building characteristics, and childhood asthma. Environ. Int. 121 (Pt 1), 916 –930. https://doi.org/10.1016/j.envint.2018.09.013. Epub 2018 Oct 20. PMID: 30347374.

17. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9–19. https://doi.org/10.1097/WOX.0b013e3182439613.

18. Bobb, J.F., Claus Henn, B., Valeri, L., Coull, B.A., 2018. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 17, 67. https://doi.org/10.1186/s12940-018-0413-y.

19. Bornehag, C.-G., Lundgren, B., Weschler, C.J., Sigsgaard, T., Hagerhed-Engman, L., Sundell, J., 2005. Phthalates in indoor dust and their association with build ing characteristics. Environ. Health Perspect. 113, 1399–1404. https://doi.org/10.1289/ehp.7809.

20. Callesen, M., Bekö, G., Weschler, C.J., Langer, S., Brive, L., Clausen, G., Toftum, J., Sigsgaard, T., Høst, A., Jensen, T.K., 2014. Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children. Int. J. Hyg. Environ. Health 217, 645–652. https://doi.org/10.1016/j.ijheh.2013.12.001.

21. Cao, X.L., 2010. Phthalate esters in foods: sources, occurrence, and analytical methods. Compr. Rev. Food Sci. Food Saf. 9 (1), 21–43.

22. Carlstedt, F., Jonsson, ¨ B.A.G., Bornehag, C.-G., 2013. PVC flooring is related to human uptake of phthalates in infants. Indoor Air 23, 32–39. https://doi.org/10.1111/j.1600-0668.2012.00788.x.

23. Carrico, C., Gennings, C., Wheeler, D.C., Factor-Litvak, P., 2015. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 20, 100–120. https://doi.org/10.1007/s13253-014-0180-3.

24. CDC, 2019. Fourth National Report on Human Exposure to Environmental Chemicals.

25. Chang, J.-W., Lee, C.-C., Pan, W.-H., Chou, W.-C., Huang, H.-B., Chiang, H.-C., Huang, P.-C., 2017. Estimated daily intake and cumulative risk assessment ofphthalates in the general Taiwanese after the 2011 DEHP food scandal. Sci. Rep. 7, 45009. https://doi.org/10.1038/srep45009.

26. Choi, W.J., Kwon, H.J., Hong, S., Lim, W.R., Kim, H., Kim, J., Kim, C., Kim, K.S.,2014. Potential nonmonotonous association between di(2-ethylhexyl) phthalate exposure and atopic dermatitis in Korean children. Br. J. Dermatol. 171, 854–860. https://doi.org/10.1111/bjd.12953.

27. Cui, H., Kong, Y., & Zhang, H., 2012. Oxidative stress, mitochondrial dysfunction, and aging. Journal of signal transduction, 2012, 646354.https://doi.org/10.1155/2012/646354

28. Dearman, R.J., Beresford, L., Bailey, L., Caddick, H.T., Betts, C.J., Kimber, I., 2008. Di-(2-ethylhexyl) phthalate is without adjuvant effect in mice on ovalbumin. Toxicol. 244, 231–241. https://doi.org/10.1016/j.tox.2007.11.017.

29. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293-342. doi:10.1210/er.2009-0002.

30. DIRECTIVE 2005/84/EC, 2005.

31. Duty, S.M., Ackerman, R.M., Calafat, A.M., Hauser, R., 2005. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ. Health Perspect. 113, 1530–1535. https://doi.org/10.1289/ehp.8083.

32. EFSA (European Food Safety Authority), 2005a. Opinion of the scientific panel on food additives, flavourings, processing aids and material in contact with food (AFC) on a request from the commission related to DiButylphthalate (DBP) for use in food contact materials, 2005 EFSA Journal 3 (9), 242. https://doi.org/10.2903/j. efsa.2005.242, 17 pp.

33. EFSA (European Food Safety Authority), 2005b. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to butylbenzylphthalate (BBP) for use in food contact materials, 2005 EFSA Journal 3 (9), 241. https://doi.org/10.2903/j.efsa.2005.241, 14 pp.

34. EFSA (European Food Safety Authority), 2005c. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to bis(2-ethylhexyl) phthalate (DEHP) for use in food contact materials, 2005 EFSA Journal 3 (9), 243. https://doi.org/10.2903/j.efsa.2005.243, 20 pp.

35. EFSA (European Food Safety Authority), 2005d. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to diisononylphthalate (DINP) for use in food contact materials, 2005 EFSA Journal 3 (9), 244. https://doi.org/10.2903/j.efsa.2005.244, 18 pp.

36. EFSA, 2019. Updated risk assessment of five phthalates. Accessed on 2020/11/06. https://www.foodpackagingforum.org/news/efsa-updated-risk-assessment-of-fivephthalates.

37. Fortenberry C, Walker M, Dang A, Loka A, Date G, Cysneiros de Carvalho K, Morrison G, Williams B. Analysis of indoor particles and gases and their evolution with natural ventilation. Indoor Air. 2019 Sep;29(5):761-779. doi: 10.1111/ina.12584. Epub 2019 Aug 1. PMID: 31264732; PMCID: PMC8415620.

38. Franken, C., Lambrechts, N., Govarts, E., Koppen, G., Den Hond, E., Ooms, D., Voorspoels, S., Bruckers, L., Loots, I., Nelen, V., Sioen, I., Nawrot, T.S., Baeyens, W., Van Larebeke, N., Schoeters, G., 2017. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int. J. Hyg. Environ. Health 220, 468–477. https://doi.org/10.1016/j.ijheh.2017.01.006.

39. Frederiksen, H., Nielsen, O., Koch, H.M., Skakkebaek, N.E., Juul, A., Jorgensen, N., Andersson, A.-M., 2020. Changes in urinary excretion of phthalates, phthalate substitutes, bisphenols and other polychlorinated and phenolic substances in young Danish men; 2009-2017. Int. J. Hyg Environ. Health 223, 93–105. https://doi.org/10.1016/j.ijheh.2019.10.002.

40. Galam, L., Failla, A., Soundararajan, R., Lockey, R.F., Kolliputi, N., 2015. 4 -hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget 6, 41508–41521. https://doi.org/10.18632/oncotarget.6131.

41. Guo, J., Han, B., Qin, L., Li, B., You, H., Yang, J., Liu, D., Wei, C., Nanberg, E., Bornehag, C.G., Yang, X., 2012. Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl) phthalate in ovalbumin-immunized BALB/c mice. PLOS ONE 7, e39008. https://doi.org/10.1371/journal.pone.0039008.

42. Hartmann, C., Uhl, M., Weiss, S., Koch, H.M., Scharf, S., Konig, ¨ J., 2015. Human biomonitoring of phthalate exposure in Austrian children and adults and cumulative risk assessment. Int. J. Hyg Environ. Health 218, 489–499. https://doi.org/10.1016/ j.ijheh.2015.04.002.

43. Hauptman M, Woolf AD. Childhood Ingestions of Environmental Toxins: What Are the Risks? Pediatr Ann. 2017 Dec 1;46(12):e466-e471. doi: 10.3928/19382359- 20171116-01. PMID: 29227523; PMCID: PMC6982419.

44. Hauser, R., Calafat, A.M., 2005. Phthalates and human health. Occup. Environ. Med. 62, 806–818. https://doi.org/10.1136/oem.2004.017590.

45. Hehner, S.P., Breitkreutz, R., Shubinsky, G., Unsoeld, H., Schulze -Osthoff, K., Schmitz, M.L., Dröge, W., 2000. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J. Immunol. 165, 4319 –4328. https://doi.org/10.4049/jimmunol.165.8.4319.

46. Heindel JJ, Powell CJ. Phthalate ester effects on rat Sertoli cell function in vitro: effects of phthalate side chain and age of animal. Toxicol Appl Pharmacol. 1992 Jul;115(1):116-23. doi: 10.1016/0041-008x(92)90374-2. PMID: 1321518.

47. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health 2007;210(5):623-634.

48. Hsu, N.-Y., Liu, Y.-C., Lee, C.-W., Lee, C.-C., Su, H.-J., 2017. Higher moisture content is associated with greater emissions of DEHP from PVC wallpaper. Environ. Res. 152, 1–6. https://doi.org/10.1016/j.envres.2016.09.027.

49. Husøy, T., Martínez, M.A., Sharma, R.P., Kumar, V., Andreassen, M., Sakhi, A.K., Thomsen, C., Dirven, H., 2020 Sep. Comparison of aggregated exposure to di(2-ethylhexyl) phthalate from diet and personal care products with urinary concentrations of metabolites using a PBPK model - results from the Norwegian biomonitoring study in EuroMix. Food Chem. Toxicol. 143, 111510. https://doi.org/10.1016/j.fct.2020.111510. Epub 2020 Jun 30. PMID: 32615240.

50. IHS Markit, 2018. Chemical Economics Handbook.

51. Jacobson MH., Wu Y., Liu M., Attina TM., Naidu M., Karthikraj R., Kannan K., Warady BA., Furth S., Vento S., 2020. Trachtman H., Trasande L. Serially assessed bisphenol A and phthalate exposure and association with kidney function in children with chronic kidney disease in the US and Canada: A longitudinal cohort study. PLoS Med. 17(10):e1003384. 4. https://doi.org/10.1371/journal. pmed.1003384.

52. James, R.A., Hertz-Picciotto, I., Willman, E., Keller, J.A., Charles, M.J., 2002. Determinants of serum polychlorinated biphenyls and organochlorine pesticides measured in women from the child health and development study cohort, 1963- 1967. Environ. Health Perspect. 110, 617–624. https://doi.org/10.1289/ ehp.02110617.

53. Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015 Dec;85:27-39. doi: 10.1016/j.envint.2015.08.005. Epub 2015 Aug 24. PMID: 26313703; PMCID: PMC4648682.

54. Kang, J., Duan, J., Song, J., Luo, C., Liu, H., Li, B., Yang, X., Yu, W., Chen, M., 2018. Exposure to a combination of formaldehyde and DINP aggravated asthma-like pathology through oxidative stress and NF-κB activation. Toxicol. 404–405, 49–58. https://doi.org/10.1016/j.tox.2018.05.006.

55. Kasper-Sonnenberg, M., Koch, H.M., Wittsiepe, J., Brüning, T., Wilhelm, M., 2014. Phthalate metabolites and bisphenol A in urines from German school-aged children: results of the Duisburg birth cohort and Bochum cohort studies. Int. J. Hyg Environ. Health 217, 830–838. https://doi.org/10.1016/j.ijheh.2014.06.001.

56. Kavlock, R., Boekelheide, K., Chapin, R., Cunningham, M., Faustman, E., Foster, P., Golub, M., Henderson, R., Hinberg, I., Little, R., Seed, J., Shea, K., Tabacova, S., Tyl, R., Williams, P., Zacharewski, T., 2002. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-butyl phthalate. Reprod. Toxicol. 16, 489–527. https://doi.org/10.1016/s0890-6238(02)00033-3.

57. Keil AP, Buckley JP, O'Brien KM, Ferguson KK, Zhao S, White AJ. A QuantileBased g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ Health Perspect. 2020 Apr;128(4):47004. doi: 10.1289/EHP5838. Epub 2020 Apr 7. PMID: 32255670; PMCID: PMC7228100.

58. Ketema, R.M., Ait Bamai, Y., Ikeda-Araki, A., Saito, T., Kishi, R., 2021. Secular trends of urinary phthalate metabolites in 7-year old children and association with building characteristics: Hokkaido study on environment and children’s health. Int. J. Hyg. Environ. Health 234, 113724. https://doi.org/10.1016/j.ijheh.2021.113724.

59. Kishi, R., Araki, A., Minatoya, M., Hanaoka, T., Miyashita, C., Itoh, S., Kobayashi, S., Ait Bamai, Y., Yamazaki, K., Miura, R., Tamura, N., Ito, K., Goudarzi, H., 2017. The Hokkaido birth cohort study on environment and children’s health: cohort profileupdated 2017. Environ. Health Prev. Med. 22, 46. https://doi.org/10.1186/s12199-017-0654-3.

60. Kishi, R., Ikeda-Araki, A., Miyashita, C., Itoh, S., Kobayashi, S., Ait Bamai, Y., Yamazaki, K., Tamura, N., Minatoya, M., Ketema, R.M., Poudel, K., Miura, R., Masuda, H., Itoh, M., Yamaguchi, T., Fukunaga, H., Ito, K., Goudarzi, H., members of The Hokkaido Study on Environment and Children’s Health, 2021. Hokkaido birth cohort study on environment and children’s health: cohort profile 2021. Environ. Health Prev. Med. 26, 59. https://doi.org/10.1186/s12199-021-00980-y.

61. Kishi, R., Ketema, R.M., Ait Bamai, Y., Araki, A., Kawai, T., Tsuboi, T., Saito, I., Yoshioka, E., Saito, T., 2018. Indoor environmental pollutants and their association with sick house syndrome among adults and children in elementary school. Build. Environ. 136, 293–301. https://doi.org/10.1016/j.buildenv.2018.03.056.

62. Kishi, R., Kobayashi, S., Ikeno, T., Araki, A., Miyashita, C., Itoh, S., Sasaki, S., Okada, E., Kobayashi, S., Kashino, I., Itoh, K., Nakajima, S., Members of the Hokkaido Study on Environment and Children's Health, 2013. Ten years of progress in the Hokkaido birth cohort study on environment and children’s health: cohort profile--updated 2013. Environ. Health Prev. Med. 18, 429–450. https://doi.org/10.1007/s12199-013-0357-3.

63. Kishi, R., Sasaki, S., Yoshioka, E., Yuasa, M., Sata, F., Saijo, Y., Kurahashi, N., Tamaki, J., Endo, T., Sengoku, K., Nonomura, K., Minakami, H., 2011. Cohort profile: the Hokkaido study on environment and children’s health in Japan. Int. J. Epidemiol. 40, 611–618. https://doi.org/10.1093/ije/dyq071.

64. Koch, H.M., Christensen, K.L.Y., Harth, V., Lorber, M., Bruning, T., 2012. Di-nbutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Arch. Toxicol. 86, 1829–1839. https://doi.org/10.1007/s00204-012-0908-1.

65. Koch, H.M., Rüther, Maria, Schütze, Andr´e, Conrad, Andr´e, Claudia, P¨ almke, Petra, Apel, Thomas, Brüning, Marike, Kolossa-Gehring, 2017 Mar. Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Int. J. Hyg Environ. Health 220, 130–141. https://doi: 10.1016/j.ijheh.20 16.11.003.

66. Koch H.M, Bolt HM, Angerer J. Di(2-ethylhexyl) phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol. 2004 Mar;78(3):123-30. Epub 2003 Oct 24. PMID: 14576974.doi: 10.1007/s00204-003-0522-3.

67. Koo, J.-W., Parham, F., Kohn, M.C., Masten, S.A., Brock, J.W., Needham, L.L., Portier, C. J., 2002. The association between biomarker-based exposure estimates for phthalates and demographic factors in a human reference population. Environ. Health Perspect. 110, 405–410. https://doi.org/10.1289/ehp.02110405.

68. Kumar, A.R.; Sivaperumal, P. Analytical methods for the determination of biomarkers of exposure to phthalates in human urine samples. TrAC Trends Anal. Chem. 2016, 75, 151–161.

69. Langan, S.M., Irvine, A.D., Weidinger, S., 2020. Atopic dermatitis. Lancet 396, 345–360. https://doi.org/10.1016/S0140-6736(20)31286-1.

70. Larsen, S.T., Lund, R.M., Nielsen, G.D., Thygesen, P. and Poulsen, O.M,. 2002. Adjuvant Effect of di-n-Butyl-, di-n-Octyl-, di-iso-Nonyl- and di-iso-Decyl Phthalate in a Subcutaneous Injection Model Using BALB/c Mice. Pharmacol. Toxicol. 91: 264-272. https://doi.org/10.1034/j.1600-0773.2002.910508.x.

71. Latini, G., 2005. Monitoring phthalate exposure in humans. Clin. Chim. Acta 361, 20–29. https://doi.org/10.1016/j.cccn.2005.05.003.

72. Lazarevic, N., Barnett, AG., Sly, PD., Knibbs, LD,. 2019. Statistical Methodology in Studies of Prenatal Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and New Alternatives. Environ Health Perspect. Feb;127(2):26001. doi: 10.1289/EHP2207. PMID: 30720337; PMCID: PMC6752940.

73. Lee, I., Alakeel, R., Kim, S., Al-Sheikh, YA., 2019. Al-Mandeel H., Alyousef A.A., Kho Y., Choi K. Urinary phthalate metabolites among children in Saudi Arabia: Occurrences, risks, and their association with oxidative stress markers. Sci Total Environ. Mar 1;654:1350-1357. doi: 10.1016/j.scitotenv.2018.11.025. Epub 2018 Nov 5. PMID: 30841407.

74. Li, J., Qian, X., Zhao, H., Zhou, Y., Xu, S., Li, Y., Xiang, L., Shi, J., Xia, W., Cai, Z., 2019 Nov 30. Determinants of exposure levels, metabolism, and health risks of phthalates among pregnant women in Wuhan, China. Ecotoxicol. Environ. Saf. 184, 109657. https://doi.org/10.1016/j.ecoenv.2019.109657. Epub 2019 Sep 14. PMID: 31526923.

75. Liao, C., Liu, W., Zhang, J., Shi, W., Wang, X., Cai, J., Zou, Z., Lu, R., Sun, C., Wang, H., Huang, C., Zhao, Z., 2018. Associations of urinary phthalate metabolites with residential characteristics, lifestyles, and dietary habits among young children in Shanghai, China. Sci. Total Environ. 616–617, 1288–1297. https://doi.org/10.1016/j.scitotenv.2017.10.189.

76. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P., 2018. Oxidative stress, aging, and diseases. Clinical interventions in aging, 13, 757–772. https://doi.org/10.2147/CIA.S158513.

77. Liu, H., Gambino, F.J., Algenio, C.S., Wu, C., Gao, Y., Bouchard, C.S., Qiao, L., Bu, P., Zhao, S., 2020. Inflammation and oxidative stress induced by lipid peroxidation metabolite 4-hydroxynonenal in human corneal epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol. 258, 1717–1725. https://doi.org/10.1007/s00417-020-04647-2.

78. Lyche, J.L., Gutleb, A.C., Bergman, A., Eriksen, G.S., Murk, A.J., Ropstad, E., Saunders, M., Skaare, J.U., 2009. Reproductive and developmental toxicity of phthalates. J. Toxicol. Environ. Health B Crit. Rev. 12, 225–249. https://doi.org/ 10.1080/10937400903094091.

79. Mage, D., Allen, R., Kodali, A., 2008. Creatinine corrections for estimating children’s and adult’s pesticide intake doses in equilibrium with urinary pesticide and creatinineconcentrations. J. Expo. Sci. Environ. Epidemiol. 18, 360–368. https://doi.org/10.1038/sj.jes.7500614.

80. Minstry of Health and Welfare, 2010. (MHLW) Notice No.370.

81. Navaranjan, G., Takaro, T.K., Wheeler, A.J., Diamond, M.L., Shu, H., Azad, M.B., Becker, A.B., Dai, R., Harris, S.A., Lefebvre, D.L., Lu, Z., Mandhane, P.J., McLean, K., Moraes, T.J., Scott, J.A., Turvey, S.E., Sears, M.R., Subbarao, P., Brook, J.R., 2020. Early life exposure to phthalates in the Canadian Healthy Infant Longitudinal Development (CHILD) study: a multi-city birth cohort. J. Expo. Sci. Environ. Epidemiol. 30, 70–85. https://doi.org/10.1038/s41370-019-0182-x.

82. Nishioka, J., Iwahara, C., Kawasaki, M., Yoshizaki, F., Nakayama, H., Takamori, K., Ogawa, H., Iwabuchi, K., 2012. Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflamm. Res. 61, 69–78. https://doi.org/10.1007/s00011-011-0390-x.

83. Paredi, P., Kharitonov, S.A., Barnes, P.J., 2000. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 162, 1450–1454. https://doi.org/10.1164/ajrccm.162.4.2003064.

84. Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R. Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health. 2011 Jan 21;10:9. doi: 10.1186/1476-069X-10-9. PMID: 21255392; PMCID: PMC3037292.

85. Public Law 110-314 House of Representatives. Consumer Product Safety Improvement Act of 2008. H.R 4040, 2008.

86. Rocha, BA., Asimakopoulos, AG., Barbosa, F Jr., Kannan, K., 2017. Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. Sci Total Environ. May 15;586:152-162. doi: 10.1016/j.scitotenv.2017.01.193. Epub 2017 Feb 4. PMID: 28174045. 87. Rowdhwal, S.S.S., Chen, J., 2018. Toxic effects of di-2-ethylhexyl phthalate: an overview. BioMed Res. Int. https://doi.org/10.1155/2018/1750368, 2018, 1750368–1750368.

88. Sandeep, T., Roopakala, M.S., Silvia, C.R.W.D., Chandrashekara, S., Rao, M., 2010. Evaluation of serum immunoglobulin E levels in bronchial asthma. Lung India 27, 138–140. https://doi.org/10.4103/0970-2113.68312.

89. Sasaki, M., Morikawa, E., Yoshida, K., Adachi, Y., Odajima, H., Akasawa, A., 2019. The change in the prevalence of wheeze, eczema and rhino-conjunctivitis among Japanese children: findings from 3 nationwide cross-sectional surveys between 2005 and 2015. Allergy 74, 1572–1575. https://doi.org/10.1111/all.13773.

90. Schaffert, A., Arnold, J., Karkossa, I., Blüher, M., von Bergen ,M., Schubert, K., 2021. The Emerging Plasticizer Alternative DINCH and Its Metabolite MINCH Induce Oxidative Stress and Enhance Inflammatory Responses in Human THP-1 Macrophages. Cells. Sep 9;10(9):2367. doi: 10.3390/cells10092367. PMID: 34572016; PMCID: PMC8466537.

91. Schwedler, G., Rucic, E., Lange, R., Conrad, A., Koch, H.M., Palmke, ¨ C., Brüning, T., Schulz, C., Schmied-Tobies, M.I.H., Daniels, A., Kolossa-Gehring, M., 2020. Phthalate metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014–2017. Int. J. Hyg Environ. Health 225, 113444. https://doi.org/10.1016/j. ijheh.2019.113444.

92. Shinohara, N., Uchino, K., 2020. Diethylhexyl phthalate (DEHP) emission to indoor air and transfer to house dust from a PVC sheet. Apr 1;711:134573 Sci. Total Environ..https://doi.org/10.1016/j.scitotenv.2019.134573.Epub2019Nov20. PMID:32000312.

93. Smie ´ łowska, M., Mar´c, M., Zabiegała, B., 2017. Indoor air quality in public utility environments-a review. Environ. Sci. Pollut. Res. Int. 24, 11166–11176. https://doi.org/10.1007/s11356-017-8567-7.

94. Song, N.R., On, J., Lee, J., Park, J.-D., Kwon, H.-J., Yoon, H.J., Pyo, H., 2013. Biomonitoring of urinary di(2-ethylhexyl) phthalate metabolites of mother and child pairs in South Korea. Environ. Int. 54, 65–73. https://doi.org/10.1016/j.envint.2013.01.007.

95. Takagi, M., Yoshinaga, J., 2009. Risk assessment of chemical exposure via house dust ingestion in Japanese children. Indoor Environ. 12, 103–114. https://doi.org/10.7879/siej.12.103.

96. Tranfo, G., Caporossi, L., Pigini, D., Capanna, S., Papaleo, B., Paci, E., 2018. Temporal trends of urinary phthalate concentrations in two populations: effects of REACH authorization after five years. Int. J. Environ. Res. Publ. Health 15. https://doi.org/10.3390/ijerph15091950.

97. United Nations.org. SDG Indicators. Accessed on January 3,2021. https://unstats.un.org/sdgs/metadata/?Text=&Goal=3&Target=3.9.

98. US. EPA, 1991. US Environmental Protection Agency), Di (2-ethylhexyl) Phthalate (DEHP) CASRN 117-81-7.

99. VanderWeele, T.J., 2019. Principles of confounder selection. Eur. J. Epidemiol. 34, 211–219. https://doi.org/10.1007/s10654-019-00494-6.

100. VEC, 2018. 可塑剤出荷量. Vinyle Environmental Council. (in Japanese).

101. Wakamatsu, T.H., Dogru, M., Ayako, I., Takano, Y., Matsumoto, Y., Ibrahim, O.M.A., Okada, N., Satake, Y., Fukagawa, K., Shimazaki, J., Tsubota, K., Fujishima, H., 2010. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol. Vis. 16, 2465–2475.

102. Wang, B., Wang, H., Zhou, W., Chen, Y., Zhou, Y., Jiang, Q., 2015. Urinary excretion of phthalate metabolites in school children of China: implication for cumulative risk assessment of phthalate exposure. Environ. Sci. Technol. 49, 1120–1129. https://doi.org/10.1021/es504455a.

103. Wang, I. J., Karmaus, W. J. (2017). Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. Int. J. Environ. Res. Public Health, 14(2), 162. https://doi.org/10.3390/ijerph14020162

104. Wang, Y., Zhu, H., Kannan, K., 2019. A review of biomonitoring of phthalate exposures. Toxics 7, 1–28. https://doi.org/10.3390/toxics7020021.

105. Weng, T.-I., Chen, M.-H., Lien, G.-W., Chen, P.-S., Lin, J.C.-C., Fang, C.-C., Chen, P.-C., 2017. Effects of gender on the association of urinary phthalate metabolites with thyroid Hormones in children: a prospective cohort study in Taiwan. Int. J. Environ. Res. Publ. Health 14, 123. https://doi.org/10.3390/ijerph14020123.

106. World Health Organization, 2002. EDCs definition. https://www.who.int/ipcs/publications/en/ch1.pdf

107. World Health Organization, 2007. Prevalence of Asthma and Allergies in Children. 108. World Health Organization, 2012. State of the Science of Endocrine Disrupting Chemicals - 2012.

109. Wilson, H., VanSnick, S., 2017. The effectiveness of dust mitigation and cleaning strategies at the National Archives, UK. J. Cult. Herit. 24, 100–107. https://doi.org/10.1016/j.culher.2016.09.004.

110. Wittassek, M., Heger, W., Koch, H.M., Becker, K., Angerer, J., Kolossa-Gehring, M., 2007. Daily intake of di(2-ethylhexyl) phthalate (DEHP) by German children – A comparison of two estimation models based on urinary DEHP metabolite levels. Int. J. Hyg Environ. Health 210, 35–42. https://doi.org/10.1016/j.ijheh.2006.11.009.

111. Wittassek, M., Koch, H.M., Angerer, J., Bruning, T., 2011. Assessing exposure to phthalates - the human biomonitoring approach. Mol. Nutr. Food Res. 55, 7–31. https://doi.org/10.1002/mnfr.201000121.

112. Wittassek, M., Koch, H.M., Angerer, J., Brüning, T., 2011. Assessing exposure to phthalates - the human biomonitoring approach. Mol. Nutr. Food Res. 55, 7–31. https://doi.org/10.1002/mnfr.201000121.

113. Wormuth, M., Scheringer, M., Vollenweider, M., Hungerbühler, K., 2006. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 26, 803–824. https://doi.org/10.1111/j.1539-6924.2006.00770.x.

114. Xu, Y., Cohen Hubal, E.A., Little, J.C., 2010 Feb. Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: sensitivity, uncertainty, and implications for biomonitoring. Environ. Health Perspect. 118 (2), 253–258. https://doi.org/10.1289/ehp.0900559.

115. Yadav, U.C.S., Ramana, K.V., 2013. Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid. Med. Cell. Longev. 2013, 690545. https://doi.org/10.1155/2013/690545.

116. Yoshida, T., Mimura, M., Sakon, N., 2020. Intakes of phthalates by Japanese children and the contribution of indoor air quality in their residences. Environ. Sci. Pollut. Res. Int. 27, 19577–19591. https://doi.org/10.1007/s11356-020-08397-w.

117. Zhang, Y., Dong, T., Hu, W., Wang, X., Xu, B., Lin, Z., Hofer, T., Stefanoff, P., Chen, Y., Wang, X., Xia, Y., 2019. Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: comparison of three statistical models. Environ. Int. 123, 325–336. https://doi.org/10.1016/j.envint.2018.11.076.

118. Zhou, S., Han, M., Ren, Y., Yang, X., Duan, L., Zeng, Y., Li, J., 2020. Dibutyl phthalate aggravated asthma-like symptoms through oxidative stress and increasing calcitonin gene-related peptide release. Ecotoxicol. Environ. Saf. 199, 110740. https://doi.org/10.1016/j.ecoenv.2020.110740.

119. Zota, A.R., Calafat, A.M., Woodruff, T.J., 2014. Temporal trends in phthalate exposures: findings from the national health and nutrition examination Survey, 2001-2010. Environ. Health Perspect. 122, 235–241. https://doi.org/10.1289/ehp.1306681.

120. Zota, A.R., Phillips, C.A., Mitro, S.D., 2016. Recent fast food consumption and bisphenol A and phthalates exposures among the U.S. Population in NHANES, 2003- 2010. Environ. Health Perspect. 124, 1521–1528. https://doi.org/10.1289/ehp.1510803.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る