リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dynamics of sperm-oviduct interaction that regulates maternal immune response in cattle」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dynamics of sperm-oviduct interaction that regulates maternal immune response in cattle

MORILLO, VERNADYN ALMEDA 帯広畜産大学

2021.06.09

概要

The oviduct is an active and dynamic organ that supports functions critical for reproduction, such as sperm storage, sperm capacitation, fertilization, and early embryonic development. Once sperm reach the oviduct, many attaches to the epithelium that lines the caudal isthmus, forming a sperm reservoir. In the peri-ovulatory period, sperm move up to the ampulla of the oviduct, where fertilization and the first few days of embryonic development occur. While much has been learned about sperm interaction with the isthmus, very little is known about the interaction of sperm with the ampulla, despite its role in fertilization.

In chapter 1, a differentiated explant model using bovine oviductal ampulla obtained from the pre-ovulatory phase was developed to study the interaction between the sperm and the oviductal epithelium. The explants were derived from the primary fold of the oviductal ampulla and is approximately 3mm x 3mm in size. The explant was incubated in PEG-supplemented DMEM under a 38.5˚C incubator with 5% CO2 in humidified air and was subjected to microscopic observation of morphology under phase contrast and fluorescence microscopy. Hematoxylin and eosin-preparations of the explant was also used for further observation of the complex tissue architecture. The explant is comprised of ciliated and non-ciliated cells. The motile cilia are beating synchronously which caused the explant to move around the media. The explant was incubated with sperm to observe the interaction.

Mitochondrial stain JC1 was used to stain the midpiece of sperm for illumination. The sperm attached immediately to ciliated cells with the sperm head bound tightly by the cilia. The sperm bound uniformly all over the explant surface and are tangentially attached to the epithelium. The beating of the ciliated epithelial cells allowed the sperm to orient in similar direction. Viability evaluation showed that sperm and 1 explant optimal condition for incubation is maintained up to 6 h. The results show that the explant model is a suitable model for observation of the interaction between the sperm and the intact oviductal ampullary tissue.

In chapter 2, a detailed study on sperm-oviductal ampulla interaction and its impact on sperm attachment and immune response of the oviductal tissue was carried out using the differentiated explant model comprised of the pre-ovulatory phase bovine oviductal ampulla. Sperm capacitation was induced by incubating the sperm with heparin while non-treated sperm served as the control. Both heparin-treated and non-treated sperm attached in equal numbers to the explant. Despite no detectable difference in the sperm attachment, only the heparin treated sperm stimulated mRNA transcription of TLR2, TGFB1, PGES, and IL8, whereas TNFA and IL10 were not affected. In the non-treated sperm, only PGES was upregulated. The results show that the explant epithelium is more immunologically sensitive to the sperm treated with heparin for capacitation. Somehow, heparin allowed modifications on the sperm membrane which facilitated the interaction with the TLR2.

In chapter 3, the explant model was used to study the involvement of the TLR2 in the sperm-oviduct ampullary explant interaction and immune response of the explant to the presence of the sperm. The TLR2 was blocked using a specific TLR1/2 antagonist. Afterwards, the sperm attachment to explant, gene transcription, and TLR2 protein expression and localization in the explant were evaluated.

Adding the TLR1/2 antagonist in the coincubation system for either types of sperm resulted in a reduction of the attachment at 5 min and 15 mins. The TLR1/2 antagonist also effectively blocked the sperm-induced mRNA expression for TLR2, TGFB1, and IL8. The attachment of the sperm to the explant also resulted in an intense TLR2 protein expression of the oviductal ampullary epithelium. However, the tissue response to sperm was ablated by the addition of the TLR1/2 antagonist into the coincubation system.

It can be concluded that the bovine differentiated explant model developed in this study can be used to observe the sperm interaction with the intact and highly complex oviductal tissue. The model provided detailed observations on the dynamics between the sperm and intact ampullary epithelium.

Although both heparin-treated and non-treated sperm showed the same affinity for the explant epithelial cells, only the sperm incubated with heparin stimulated an anti-inflammatory immune response in the explant which may serve to protect the sperm in the oviduct. The response is accompanied by increased transcription and translation for the TLR2 protein. Blocking the TLR2 gives the evidence that the TLR2 mediates the immune response of the pre-ovulatory ampullary epithelium to sperm binding. Further studies are needed to elucidate the detailed mechanism of the sperm-oviduct interactions and the identification of the ligands involved in the interaction and subsequent immune response.

この論文で使われている画像

参考文献

1. Nabors B, Linford R. Anatomy of the Reproductive System of the Bull. In Bovine Reproduction, R.M. Hopper (E.). 2014. doi:10.1002/9781118833971.ch1

2. Töpfer-Petersen E, Wagner A, Friedrich J, Petrunkina A, Ekhlasi-Hundrieser M, Waberski D, Drommer W. Function of the mammalian oviductal sperm reservoir. J Exp Zool. 2002 Feb 1;292(2):210-5. doi: 10.1002/jez.1157. PMID: 11754037.

3. Prakash S, Prithiviraj E, Suresh S, Lakshmi NV, Ganesh MK, Anuradha M, Ganesh L, Dinesh P. Morphological diversity of sperm: A mini review. Iran J Reprod Med. 2014 Apr;12(4):239-42. PMID: 24976817; PMCID: PMC4071627.

4. Tung, C. K., Ardon, F., Roy, A., Koch, D. L., Suarez, S. S., & Wu, M. (2015). Emergence of upstream swimming via a hydrodynamic transition. Physical review letters. 114(10), 108102.

5. García-Vázquez FA, Gadea J, Matás C, Holt WV. Importance of sperm morphology during sperm transport and fertilization in mammals. Asian J Androl. 2016 Nov-Dec;18(6):844-850. doi: 10.4103/1008-682X.186880. PMID: 27624988

6. Yániz J, Capistrós S, Vicente-Fiel S, Hidalgo C, Santolaria P. A comparative study of the morphometry of sperm head components in cattle, sheep, and pigs with a computer-assisted fluorescence method. Asian J Androl. 2016;18:840–3.

7. Varea-Sánchez M, Tourmente M, Bastir M, Roldan ER. Unraveling the Sperm Bauplan: Relationships Between Sperm Head Morphology and Sperm Function in Rodents. Biol Reprod. 2016. Jul;95(1):25. doi: 10.1095/biolreprod.115.138008. Epub 2016 Jun 8. PMID: 27281707.

8. Kuo YW, Li SH, Maeda K, Gadella BM, Tsai PS. Roles of the reproductive tract in modifications of the sperm membrane surface. J Reprod Dev. 2016 Aug 25;62(4):337-43. doi: 10.1262/jrd.2016-028. Epub 2016 Mar 24. PMID: 27009019; PMCID: PMC5004788.

9. Chang, MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951 Oct 20;168(4277):697-8. doi: 10.1038/168697b0. PMID: 14882325.

10. Austin, CR. The capacitation of the mammalian sperm. Nature. 1952 Aug 23;170(4321):326. doi: 10.1038/170326a0. PMID: 12993150.

11. Parrish JJ. Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology. 2014 Jan 1;81(1):67-73. doi: 10.1016/j.theriogenology.2013.08.005. PMID: 24274411; PMCID: PMC3886814.

12. Bedford JM. Sperm capacitation and fertilization in mammals. Biol Reprod Suppl. 1970;2:128-58. PMID: 12254592.

13. Austin CR. Membrane fusion events in fertilization. J Reprod Fertil. 1975 Jul;44(1):155-66. doi: 10.1530/jrf.0.0440155. PMID: 1097670.

14. Ruffenach S. Sperm Capacitation. Embryo project Encyclopedia. 2009. ISSN:1940-5030. http://emnryo.asu.edu/handle/10776/1938.

15. Parrish JJ, Susko-Parrish JL, First NL. Capacitation of bovine sperm by heparin is correlated with 3H-heparin binding and is blocked by protamine sulfate. Biol Reprod. 1988;38(Suppl. 1):59.

16. Parrish JJ, Susko-Parrish JL, Uguz C, First NL. Differences in the role of cAMP during capacitation of bovine sperm by heparin or oviduct fluid. Biol Reprod. 1994;51:1099–108

17. Handrow RR, Boehm SK, Lenz RW, Robinson JA, Ax RL. Specific binding of the glycosaminoglycan 3H-heparin to bull, monkey, and rabbit spermatozoa in vitro. J Androl. 1984;5:51–63.

18. Parrish JJ, Susko-Parrish JL, Handrow RH, Ax RL, First NL. Effects of sulfated glycoconjugates on capacitation and the acrosome reaction of bovine and hamster spermatozoa. Gamete Res. 1989b;24:403–13.

19. Manjunath P, Therien I. Role of seminal plasma phospholipid binding proteins in sperm membrane lipid modification that occurs during capacitation. J Reprod Immunol. 2002;53:109–19.

20. Medeiros CMO, Parrish JJ. Changes in lectin binding to bovine sperm during heparin-induced capacitation. Molec Reprod Develop. 1996; 44:525–32.

21. Fazeli A, Pewsey E. Maternal communication with gametes and embryos: a complex interactome. Brief Funct Genomic Proteomic. 2008 Mar;7(2):111-8. doi: 10.1093/bfgp/eln006. Epub 2008 Feb 12. PMID: 18270217.

22. Mahmoud A, Parrish JJ. Effect of capacitation on lectin binding to bovine sperm: flow cytometric analysis. Molec Reprod Develop. 1996;43:554–60.

23. Suzuki H, Foote RH. Bovine oviductal epithelial cells (BOEC) and oviducts: I. For embryo culture. II. Using SEM for studying interactions with spermatozoa. Microsc Res Tech. 1995 Aug 15;31(6):519-30. doi: 10.1002/jemt.1070310608. PMID: 8527852.

24. Yániz JL, Lopez-Gatius F, Santolaria P, Mullins KJ. Study of the functional anatomy of bovine oviductal mucosa. Anat Rec. 2000 Nov 1;260(3):268-78. doi: 10.1002/10970185(20001101)260:3<268::AID-AR60>3.0.CO;2-L. PMID: 11066037.

25. Abe H, Onodera M, Sugawara S, Satoh T, Hoshi H. Ultrastructural features of goat oviductal secretory cells at follicular and luteal phases of the oestrous cycle. J Anat. 1999 Nov;195 ( Pt 4)(Pt 4):515-21. doi: 10.1046/j.1469-7580.1999.19540515.x. PMID: 10634690; PMCID: PMC1468022.

26. Abe H, Hoshi H. Regional and cyclic variations in the ultrastructural features of secretory cells in the oviductal epithelium of the Chinese Meishan pig. Reprod Domest Anim. 2007 Jun;42(3):292-8. doi: 10.1111/j.1439-0531.2006.00781.x. PMID: 17506808.

27. Steinhauer N, Boos A, Günzel-Apel AR. Morphological changes and proliferative activity in the oviductal epithelium during hormonally defined stages of the oestrous cycle in the bitch. Reprod Domest Anim. 2004 Apr;39(2):110-9. doi: 10.1111/j.1439-0531.2004.00490.x. PMID: 15065993.

28. Ellington JE. The bovine oviduct and its role in reproduction: a review of the literature. Cornell Vet. 1991 Jul;81(3):313-28. PMID: 1879144.

29. Abe H. The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells. Histol Histopathol. 1996 Jul;11(3):743-68. PMID: 8839764.

30. Mokhtar DM. Microscopic and histochemical characterization of the bovine uterine tube during the follicular and luteal phases of estrous cycle. J Microsc Ultrastruct. 2015 Jan-Mar;3(1):44-52. doi: 10.1016/j.jmau.2014.09.002. Epub 2014 Sep 29. PMID: 30023181; PMCID: PMC6014219.

31. Suarez SS. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016 Jan;363(1):185-194. doi: 10.1007/s00441-015-2244-2. Epub 2015 Jul 17. PMID: 26183721; PMCID: PMC4703433.

32. Wånggren, K., Stavreus-Evers, A., Olsson, C., Andersson, E., & Gemzell-Danielsson, K. (2008). Regulation of muscular contractions in the human Fallopian tube through prostaglandins and progestagens. Human reproduction (Oxford, England), 23(10), 2359–2368.

33. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006 Jan-Feb;12(1):23-37. doi: 10.1093/humupd/dmi047. Epub 2005 Nov 4. PMID: 16272225.

34. Fujihara Y, Miyata H, Ikawa M. Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models. Exp Anim. 2018 May 10;67(2):91-104. doi: 10.1538/expanim.170153. Epub 2018 Jan 22. PMID: 29353867; PMCID: PMC5955741.

35. Hino T, Yanagimachi R. Active peristaltic movements and fluid production of the mouse oviduct: their roles in fluid and sperm transport and fertilization†. Biol Reprod. 2019 Jul 1;101(1):40-49. doi: 10.1093/biolre/ioz061. PMID: 30977810.

36. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013 Mar 18;23(6):443-52. doi: 10.1016/j.cub.2013.02.007. Epub 2013 Feb 28. PMID: 23453951; PMCID: PMC3607503.

37. Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature. 2011 Mar 17;471(7338):387-91. doi: 10.1038/nature09767. PMID: 21412339.

38. Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature. 2011 Mar 17;471(7338):382-6. doi: 10.1038/nature09769. PMID: 21412338.

39. Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med. 2003 Feb;9(2):149-50. doi: 10.1038/nm0203-149. PMID: 12563318.

40. Suarez SS. Gamete and zygote transport. In The Physiology of Reproduction, 3rd edn, 2009. pp 133–148. Eds Knobil E, Neill JD. New York, NY: Raven Press

41. Kölle S, Dubielzig S, Reese S, Wehrend A, König P, Kummer W. Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow. Biol Reprod. 2009 Aug;81(2):267-74. doi: 10.1095/biolreprod.108.073874. Epub 2009 Mar 18. PMID: 19299315.

42. Croxatto HB. Physiology of gamete and embryo transport through the fallopian tube. Reprod Biomed Online. 2002 Mar-Apr;4(2):160-9. doi: 10.1016/s1472-6483(10)61935-9. PMID: 12470580.

43. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008 Nov-Dec;14(6):647-57. doi: 10.1093/humupd/dmn029. Epub 2008 Jul 24. PMID: 18653675.

44. Petrunkina AM, Gehlhaar R, Drommer W, Waberski D, Töpfer-Petersen E. Selective sperm binding to pig oviductal epithelium in vitro. Reproduction. 2001 Jun;121(6):889-96. PMID: 11373175.

45. Coy P, Jiménez-Movilla M, García-Vázquez FA, Mondéjar I, Grullón L, Romar R. Oocytes use the plasminogen-plasmin system to remove supernumerary spermatozoa. Hum Reprod. 2012 Jul;27(7):1985-93. doi: 10.1093/humrep/des146. Epub 2012 May 3. PMID: 22556378.

46. Ghersevich S, Massa E, Zumoffen C. Oviductal secretion and gamete interaction. Reproduction. 2015 Jan;149(1):R1-R14. doi: 10.1530/REP-14-0145. Epub 2014 Sep 4. PMID: 25190504.

47. Kawakami E, Kashiwagi C, Hori T, Tsutsui T. Effects of canine oviduct epithelial cells on movement and capacitation of homologous spermatozoa in vitro. Anim Reprod Sci. 2001 Oct 31;68(1-2):12131. doi: 10.1016/s0378-4320(01)00135-x. PMID: 11600280.

48. Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. International Journal of Developmental Biology. 2004 Sep 1;52(5-6):455-62.

49. Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm. 2010;2010:976024. doi: 10.1155/2010/976024. Epub 2010 Apr 11. PMID: 20396665; PMCID: PMC2853082.

50. Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010 Sep-Oct;1(5):440-64. doi: 10.4161/viru.1.5.12983. PMID: 21178486.

51. Fazeli A, Bruce C, Anumba DO. Characterization of Toll-like receptors in the female reproductive tract in humans. Hum Reprod. 2005 May;20(5):1372-8. doi: 10.1093/humrep/deh775. Epub 2005 Feb 3. PMID: 15695310.

52. Ezz MA, Marey MA, Elweza AE, Kawai T, Heppelmann M, Pfarrer C, Balboula AZ, Montaser A, Imakawa K, Zaabel SM, Shimada M, Miyamoto A. TLR2/4 signaling pathway mediates sperminduced inflammation in bovine endometrial epithelial cells in vitro. PLoS One. 2019 Apr 17;14(4):e0214516. doi: 10.1371/journal.pone.0214516. PMID: 30995239; PMCID: PMC6469758.

53. Akthar I, Suarez S, Morillo VA, Sasaki M, Ezz MA, Takahashi KI, Shimada M, Marey MA, Miyamoto A. Sperm enter glands of preovulatory bovine endometrial explants and initiate inflammation. Reproduction. 2019 Dec 1:REP-19-0414.R2. doi: 10.1530/REP-19-0414. Epub ahead of print. PMID: 31794421.

54. Marey MA, Yousef MS, Kowsar R, Hambruch N, Shimizu T, Pfarrer C, Miyamoto A. Local immune system in oviduct physiology and pathophysiology: attack or tolerance? Domest Anim Endocrinol. 2016 Jul;56 Suppl:S204-11. doi: 10.1016/j.domaniend.2016.02.005. PMID: 27345318.

55. Amjadi F, Zandieh Z, Salehi E, Jafari R, Ghasemi N, Aflatoonian A, Fazeli A, Aflatoonian R. Variable localization of Toll-like receptors in human fallopian tube epithelial cells. Clin Exp Reprod Med. 2018 Mar;45(1):1-9. doi: 10.5653/cerm.2018.45.1.1. Epub 2018 Mar 30. PMID: 29662819; PMCID: PMC5897241.

56. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev. 2005 Aug;206:306-35. doi: 10.1111/j.01052896.2005.00287.x. PMID: 16048557.

57. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011 Jun;3(6):920-40. doi: 10.3390/v3060920. Epub 2011 Jun 23. PMID: 21994762; PMCID: PMC3186011.

58. Yousef MS, Marey MA, Hambruch N, Hayakawa H, Shimizu T, Hussien HA, Abdel-Razek AK, Pfarrer C, Miyamoto A. Sperm Binding to Oviduct Epithelial Cells Enhances TGFB1 and IL10 Expressions in Epithelial Cells as Well as Neutrophils In Vitro: Prostaglandin E2 As a Main Regulator of Anti-Inflammatory Response in the Bovine Oviduct. PLoS One. 2016 Sep 23;11(9):e0162309. doi: 10.1371/journal.pone.0162309. PMID: 27662642; PMCID: PMC5035077.

59. Fazeli A, Affara NA, Hubank M, Holt WV. Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol Reprod. 2004 Jul;71(1):60-5. doi: 10.1095/biolreprod.103.026815. Epub 2004 Feb 18. PMID: 14973272.

60. Ghersevich S, Massa E, Zumoffen C. Oviductal secretion and gamete interaction. Reproduction. 2015 Jan;149(1):R1-R14. doi: 10.1530/REP-14-0145. Epub 2014 Sep 4. PMID: 25190504.

61. Artemenko K, Horáková J, Steinberger B, Besenfelder U, Brem G, Bergquist J, Mayrhofer C. A proteomic approach to monitor the dynamic response of the female oviductal epithelial cell surface to male gametes. J Proteomics. 2015 Jan 15;113:1-14. doi: 10.1016/j.jprot.2014.09.016. Epub 2014 Oct 2. PMID: 25281772.

62. Gualtieri R, Boni R, Tosti E, Zagami M, Talevi R. Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro. Reproduction. 2005 Jan;129(1):51-60. doi: 10.1530/rep.1.00374. PMID: 15615898.

63. Talevi R, Zagami M, Castaldo M, Gualtieri R. Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium. Biol Reprod. 2007 Apr;76(4):728-35. doi: 10.1095/biolreprod.106.056028. Epub 2007 Jan 17. PMID: 17229933.

64. Gualtieri R, Mollo V, Barbato V, Talevi R. Ability of sulfated glycoconjugates and disulfidereductants to release bovine epididymal sperm bound to the oviductal epithelium in vitro. Theriogenology. 2010 May;73(8):1037-43. doi: 10.1016/j.theriogenology.2009.11.030. Epub 2010 Feb 2. PMID: 20129657.

65. Schuel H, Burkman LJ, Lippes J, Crickard K, Mahony MC, Giuffrida A, Picone RP, Makriyannis A. Evidence that anandamide-signaling regulates human sperm functions required for fertilization. Mol Reprod Dev. 2002 Nov;63(3):376-87. doi: 10.1002/mrd.90021. PMID: 12237954.

66. Maccarrone M, Barboni B, Paradisi A, Bernabò N, Gasperi V, Pistilli MG, Fezza F, Lucidi P, Mattioli M. Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. J Cell Sci. 2005 Oct 1;118(Pt 19):4393-404. doi: 10.1242/jcs.02536. Epub 2005 Sep 6. PMID: 16144868.

67. Rossato M, Ion Popa F, Ferigo M, Clari G, Foresta C. Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. J Clin Endocrinol Metab. 2005 Feb;90(2):984-91. doi: 10.1210/jc.2004-1287. Epub 2004 Nov 23. PMID: 15562018.

68. Gervasi MG, Marczylo TH, Lam PM, Rana S, Franchi AM, Konje JC, Perez-Martinez S. Anandamide levels fluctuate in the bovine oviduct during the oestrous cycle. PLoS One. 2013 Aug 16;8(8):e72521. doi: 10.1371/journal.pone.0072521. PMID: 23977311; PMCID: PMC3745412.

69. Osycka-Salut C, Gervasi MG, Pereyra E, Cella M, Ribeiro ML, Franchi AM, Perez-Martinez S. Anandamide induces sperm release from oviductal epithelia through nitric oxide pathway in bovines. PLoS One. 2012;7(2):e30671. doi: 10.1371/journal.pone.0030671. Epub 2012 Feb 17. PMID: 22363468; PMCID: PMC3281848.

70. Gervasi MG, Rapanelli M, Ribeiro ML, Farina M, Billi S, Franchi AM, Perez Martinez S. The endocannabinoid system in bull sperm and bovine oviductal epithelium: role of anandamide in sperm-oviduct interaction. Reproduction. 2009 Mar;137(3):403-14. doi: 10.1530/REP-08-0204. Epub 2008 Nov 28. PMID: 19042982.

71. Talevi R, Barbato V, De Iorio S, Mollo V, Capriglione T, Ricchiari L, Samo A, Gualtieri R. Is there a role for endocannabinoids in sperm-oviduct interaction? Reproduction. 2010 Aug;140(2):247-57. doi: 10.1530/REP-10-0095. Epub 2010 May 28. PMID: 20511399.

72. Ignotz GG, Cho MY, Suarez SS. Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol Reprod. 2007 Dec;77(6):906-13. doi: 10.1095/biolreprod.107.062505. Epub 2007 Aug 22. PMID: 17715429.

73. Plante G, Prud'homme B, Fan J, Lafleur M, Manjunath P. Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res. 2016 Jan;363(1):105-127. doi: 10.1007/s00441-015-22892. Epub 2015 Sep 19. PMID: 26386584.

74. Hung PH, Suarez SS. Alterations to the bull sperm surface proteins that bind sperm to oviductal epithelium. Biol Reprod. 2012 Oct 18;87(4):88. doi: 10.1095/biolreprod.112.099721. PMID: 22837481; PMCID: PMC4434996.

75. Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development. 2008 Jun;135(11):2001-11. doi: 10.1242/dev.020461. Epub 2008 Apr 23. PMID: 18434414.

76. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction. 2012 Dec;144(6):649-60. doi: 10.1530/REP-12-0279. Epub 2012 Oct 1. PMID: 23028122; PMCID: PMC4022750.

77. Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod. 1991 Jan;44(1):1027. doi: 10.1095/biolreprod44.1.102. PMID: 2015341.

78. Gualtieri R, Talevi R. In vitro-cultured bovine oviductal cells bind acrosome-intact sperm and retain this ability upon sperm release. Biol Reprod. 2000 Jun;62(6):1754-62. doi: 10.1095/biolreprod62.6.1754. PMID: 10819780.

79. Gualtieri R, Talevi R. Selection of highly fertilization-competent bovine spermatozoa through adhesion to the Fallopian tube epithelium in vitro. Reproduction. 2003 Feb;125(2):251-8. PMID: 12578539.

80. Fujihara Y, Miyata H, Ikawa M. Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models. Exp Anim. 2018 May 10;67(2):91-104. doi: 10.1538/expanim.170153. Epub 2018 Jan 22. PMID: 29353867; PMCID: PMC5955741.

81. Ishikawa Y, Usui T, Yamashita M, Kanemori Y, Baba T. Surfing and Swimming of Ejaculated Sperm in the Mouse Oviduct. Biol Reprod. 2016 Apr;94(4):89. doi: 10.1095/biolreprod.115.135418. Epub 2016 Mar 9. PMID: 26962118.

82. Wang S, Larina IV. In vivo three-dimensional tracking of sperm behaviors in the mouse oviduct. Development. 2018 Mar 19;145(6):dev157685. doi: 10.1242/dev.157685. PMID: 29487107; PMCID: PMC5897595.

83. Fazeli A, Duncan AE, Watson PF, Holt WV. Sperm-oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. Biol Reprod. 1999 Apr;60(4):879-86. doi: 10.1095/biolreprod60.4.879. PMID: 10084961.

84. Ellington JE, Ball BA, Blue BJ, Wilker CE. Capacitation-like membrane changes and prolonged viability in vitro of equine spermatozoa cultured with uterine tube epithelial cells. Am J Vet Res. 1993 Sep;54(9):1505-10. PMID: 8239141.

85. Walter I. Culture of bovine oviduct epithelial cells (BOEC). Anat Rec. 1995 Nov;243(3):347-56. doi: 10.1002/ar.1092430309. PMID: 8579254.

86. Wijayagunawardane MP, Miyamoto A, Cerbito WA, Acosta TJ, Takagi M, Sato K. Local distributions of oviductal estradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow. Theriogenology. 1998 Feb;49(3):607-18. doi: 10.1016/s0093-691x(98)00011-9. PMID: 10732039.

87. Parrish JJ, Susko-Parrish J, Winer MA, First NL. Capacitation of bovine sperm by heparin. Biol Reprod. 1988 Jun;38(5):1171-80. doi: 10.1095/biolreprod38.5.1171. PMID: 3408784.

88. Ardon F, Markello RD, Hu L, Deutsch ZI, Tung CK, Wu M, Suarez SS. Dynamics of Bovine Sperm Interaction with Epithelium Differ Between Oviductal Isthmus and Ampulla. Biol Reprod. 2016 Oct;95(4):90. doi: 10.1095/biolreprod.116.140632. Epub 2016 Sep 7. PMID: 27605344; PMCID: PMC5176364.

89. Zhang S, Mao W, Li Q, Gao R, Zhang Y, Gao L, Fu C, Wu J, Deng Y, Shen Y, Li T, Liu B, Cao J. Concentration effect of prostaglandin E2 on the growth factor expression and cell proliferation in bovine endometrial explants and their kinetic characteristics. Reprod Domest Anim. 2018 Feb;53(1):143-151. doi: 10.1111/rda.13083. Epub 2017 Oct 28. PMID: 29080298.

90. Stewart CA, Behringer RR. Mouse oviduct development. Results Probl Cell Differ. 2012;55:24762. doi: 10.1007/978-3-642-30406-4_14. PMID: 22918811.

91. Hunter RH. Components of oviduct physiology in eutherian mammals. Biol Rev Camb Philos Soc. 2012 Feb;87(1):244-55. doi: 10.1111/j.1469-185X.2011.00196.x. Epub 2011 Aug 23. PMID: 21883867.

92. Nelis H, Wojciechowicz B, Franczak A, Leemans B, D'Herde K, Goossens K, Cornillie P, Peelman L, Van Soom A, Smits K. Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro. Reprod Fertil Dev. 2016 Oct;28(12):1926-1944. doi: 10.1071/RD15044. PMID: 26085435.

93. Garner DL, Thomas CA. Organelle-specific probe JC-1 identifies membrane potential differences in the mitochondrial function of bovine sperm. Mol Reprod Dev. 1999 Jun;53(2):222-9. doi: 10.1002/(SICI)1098-2795(199906)53:2<222::AID-MRD11>3.0.CO;2-L. PMID: 10331460.

94. Schätz G, Schneiter M, Rička J, Kühni-Boghenbor K, Tschanz SA, Doherr MG, Frenz M, Stoffel MH. Ciliary beating plane and wave propagation in the bovine oviduct. Cells Tissues Organs. 2013;198(6):457-69. doi: 10.1159/000360155. Epub 2014 Apr 2. PMID: 24713584.

95. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007 Jun;35(4):495-516. doi: 10.1080/01926230701320337. PMID: 17562483; PMCID: PMC2117903.

96. Miller DJ, Winer MA, Ax RL. Heparin-binding proteins from seminal plasma bind to bovine spermatozoa and modulate capacitation by heparin. Biol Reprod. 1990 May-Jun;42(5-6):899-915. doi: 10.1095/biolreprod42.6.899. PMID: 2383614.

97. Manjunath P, Thérien I. Role of seminal plasma phospholipid-binding proteins in sperm membrane lipid modification that occurs during capacitation. J Reprod Immunol. 2002 Jan;53(1-2):109-19. doi: 10.1016/s0165-0378(01)00098-5. PMID: 11730909.

98. Chandonnet L, Roberts KD, Chapdelaine A, Manjunath P. Identification of heparin-binding proteins in bovine seminal plasma. Mol Reprod Dev. 1990 Aug;26(4):313-8. doi: 10.1002/mrd.1080260404. PMID: 2171588.

99. Moreau R, Thérien I, Lazure C, Manjunath P. Type II domains of BSP-A1/-A2 proteins: binding properties, lipid efflux, and sperm capacitation potential. Biochem Biophys Res Commun. 1998 May 8;246(1):148-54. doi: 10.1006/bbrc.1998.8513. PMID: 9600084.

100. Jois PS, Plante G, Thérien I, Manjunath P. Functional characterization of the domains of the bovine binder of SPerm 5 (BSP5) protein. Reprod Biol Endocrinol. 2015 Jun 19;13:64. doi: 10.1186/s12958-015-0058-4. PMID: 26084664; PMCID: PMC4476173.

101. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156-9. doi: 10.1006/abio.1987.9999. PMID: 2440339.

102. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.

103. Desnoyers L, Manjunath P. Major proteins of bovine seminal plasma exhibit novel interactions with phospholipid. J Biol Chem. 1992 May 15;267(14):10149-55. PMID: 1577785.

104. Thérien I, Bleau G, Manjunath P. Phosphatidylcholine-binding proteins of bovine seminal plasma modulate capacitation of spermatozoa by heparin. Biol Reprod. 1995;52(6):1372-1379. doi:10.1095/biolreprod52.6.1372

105. Gualtieri R, Mollo V, Braun S, Barbato V, F iorentino I, Talevi R. Bovine oviductal monolayers cultured under three-dimension conditions secrete factors able to release spermatozoa adhering to the tubal reservoir in vitro. Theriogenology. 2013 Feb;79(3):429-35. doi: 10.1016/j.theriogenology.2012.10.014. Epub 2012 Nov 17. PMID: 23168352.

106. Miller DJ. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans. Reprod Domest Anim. 2015 Jul;50 Suppl 2:31-9. doi: 10.1111/rda.12570. PMID: 26174917.

107. Hunter RH, Wilmut I. Sperm transport in the cow: peri-ovulatory redistribution of viable cells within the oviduct. Reprod Nutr Dev. 1984;24(5A):597-608. doi: 10.1051/rnd:19840508. PMID: 6549076.

108. Suarez SS, Brockman K, Lefebvre R. Distribution of mucus and sperm in bovine oviducts after artificial insemination: the physical environment of the oviductal sperm reservoir. Biol Reprod. 1997 Feb;56(2):447-53. doi: 10.1095/biolreprod56.2.447. PMID: 9116145.

109. Amjadi F, Salehi E, Mehdizadeh M, Aflatoonian R. Role of the innate immunity in female reproductive tract. Adv Biomed Res. 2014 Jan 9;3:1. doi: 10.4103/2277-9175.124626. PMID: 24592358; PMCID: PMC3928842.

110. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009 Apr;22(2):240-73, Table of Contents. doi: 10.1128/CMR.00046-08. PMID: 19366914; PMCID: PMC2668232.

111. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol. 2018 Oct 16;9:2379. doi: 10.3389/fimmu.2018.02379. PMID: 30459758; PMCID: PMC6232773.

112. Hug H, Mohajeri MH, La Fata G. Toll-Like Receptors: Regulators of the Immune Response in the Human Gut. Nutrients. 2018 Feb 13;10(2):203. doi: 10.3390/nu10020203. PMID: 29438282; PMCID: PMC5852779.

113. Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol. 2018 Jul 2;9:1523. doi: 10.3389/fimmu.2018.01523. PMID: 30034391; PMCID: PMC6043800.

114. Chastant S, Saint-Dizier M. Inflammation: friend or foe of bovine reproduction? Anim Reprod. 2019 Oct 24;16(3):539-547. doi: 10.21451/1984-3143-AR2019-0057. PMID: 32435296; PMCID: PMC7234060.

115. Kowsar R, Hambruch N, Liu J, Shimizu T, Pfarrer C, Miyamoto A. Regulation of innate immune function in bovine oviduct epithelial cells in culture: the homeostatic role of epithelial cells in balancing Th1/Th2 response. J Reprod Dev. 2013 Oct;59(5):470-8. doi: 10.1262/jrd.2013-036. Epub 2013 Jun 21. PMID: 23800958; PMCID: PMC3934114.

116. Jungi TW, Farhat K, Burgener IA, Werling D. Toll-like receptors in domestic animals. Cell Tissue Res. 2011 Jan;343(1):107-20. doi: 10.1007/s00441-010-1047-8. Epub 2010 Oct 7. PMID: 20927536.

117. Cao Z, Zheng M, Lv H, Guo K, Zhang Y. Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus. Mol Med Rep. 2018 May;17(5):7122-7130. doi: 10.3892/mmr.2018.8734. Epub 2018 Mar 14. PMID: 29568891; PMCID: PMC5928672.

118. Singh Suri S, Janardhan KS, Parbhakar O, Caldwell S, Appleyard G, Singh B. Expression of tolllike receptor 4 and 2 in horse lungs. Vet Res. 2006 Jul-Aug;37(4):541-51. doi: 10.1051/vetres:2006017. Epub 2006 Apr 28. PMID: 16641015.

119. Harper, M. Gamete and zygote transport. The Physiology of Reproduction 1994 (pp. 123– 187).

120. Lefebvre R, Chenoweth PJ, Drost M, LeClear CT, MacCubbin M, Dutton JT, Suarez SS. Characterization of the oviductal sperm reservoir in cattle. Biol Reprod. 1995 Nov;53(5):1066-74. doi: 10.1095/biolreprod53.5.1066. PMID: 8527509.

参考文献をもっと見る