リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「iPSC technology-based regenerative medicine for kidney diseases」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

iPSC technology-based regenerative medicine for kidney diseases

Osafune, Kenji 京都大学 DOI:10.1007/s10157-021-02030-x

2021.06

概要

AbstractWith few curative treatments for kidney diseases, increasing attention has been paid to regenerative medicine as a new therapeutic option. Recent progress in kidney regeneration using human-induced pluripotent stem cells (hiPSCs) is noteworthy. Based on the knowledge of kidney development, the directed differentiation of hiPSCs into two embryonic kidney progenitors, nephron progenitor cells (NPCs) and ureteric bud (UB), has been established, enabling the generation of nephron and collecting duct organoids. Furthermore, human kidney tissues can be generated from these hiPSC-derived progenitors, in which NPC-derived glomeruli and renal tubules and UB-derived collecting ducts are interconnected. The induced kidney tissues are further vascularized when transplanted into immunodeficient mice. In addition to the kidney reconstruction for use in transplantation, it has been demonstrated that cell therapy using hiPSC-derived NPCs ameliorates acute kidney injury (AKI) in mice. Disease modeling and drug discovery research using disease-specific hiPSCs has also been vigorously conducted for intractable kidney disorders, such as autosomal dominant polycystic kidney disease (ADPKD). In an attempt to address the complications associated with kidney diseases, hiPSC-derived erythropoietin (EPO)-producing cells were successfully generated to discover drugs and develop cell therapy for renal anemia. This review summarizes the current status and future perspectives of developmental biology of kidney and iPSC technology-based regenerative medicine for kidney diseases.

この論文で使われている画像

参考文献

1. GBD Chronic Kidney Disease Collaboration. Global, regional,

and national burden of chronic kidney disease, 1990–2017:

a systematic analysis for the Global Burden of Disease

Study 2017. Lancet. 2020;395(10225):709–33. https​: //doi.

org/10.1016/S0140​-6736(20)30045​-3.

2. Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K,

Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa

M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced

pluripotent stem cells and their use in human models of disease

and development. Physiol Rev. 2019;99(1):79–114. https​://doi.

org/10.1152/physr​ev.00039​.2017.

3. Saxen L. Organogenesis of the kidney. Cambridge: Cambridge

University Press; 1987.

4. Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development. 2006;133(1):151–61. https​://doi.org/10.1242/dev.02174​.

5. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self

M, Oliver G, McMahon AP. Six2 defines and regulates a

multipotent self-renewing nephron progenitor population

throughout mammalian kidney development. Cell Stem Cell.

2008;3(2):169–81. https​://doi.org/10.1016/j.stem.2008.05.020.

6. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H,

Nishinakamura R. Redefining the in vivo origin of metanephric

nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell.

2014;14(1):53–67. https​://doi.org/10.1016/j.stem.2013.11.010.

7. Mugford JW, Sipilä P, McMahon JA, McMahon AP. Osr1

expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an

Osr1-dependent nephron progenitor compartment within the

mammalian kidney. Dev Biol. 2008;324(1):88–98. https​://doi.

org/10.1016/j.ydbio​.2008.09.010.

8. Mae S, Shono A, Shiota F, Yasuno T, Kajiwara M, GotodaNishimura N, Arai S, Sato-Otubo A, Toyoda T, Takahashi K,

Nakayama N, Cowan CA, Aoi T, Ogawa S, McMahon AP,

Yamanaka S, Osafune K. Monitoring and robust induction of

nephrogenic intermediate mesoderm from human pluripotentstemcells. Nat Commun. 2013;4:1367. https​://doi.org/10.1038/

ncomm​s2378​.

9. Araoka T, Mae S, Kurose Y, Uesugi M, Ohta A, Yamanaka S,

Osafune K. Efficient and rapid induction of human iPSCs/ESCs

into nephrogenic intermediate mesoderm using small moleculebased differentiation methods. PLoS ONE. 2014;9(1):e84881.

https​://doi.org/10.1371/journ​al.pone.00848​81.

10. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson

C, Parton RG, Wolvetang EJ, Roost MS, de Sousa C, Lopes

SM, Little MH. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature.

2015;526(7574):564–8. https​://doi.org/10.1038/natur​e1569​5.

11. Morizane R, Lam AQ, Freedman BS, Kishi S, Valeius MT, Bonventre JV. Nephron organoids derived from human pluripotent

stem cells model kidney development and injury. Nat Biotechnol.

2015;33(11):1193–200. https​://doi.org/10.1038/nbt.3392.

583

12. Tsujimoto H, Kasahara T, Sueta S, Araoka T, Sakamoto S, Okada

C, Mae SI, Nakajima T, Okamoto N, Taura D, Nasu M, Shimizu

T, Ryosaka M, Li Z, Sone M, Ikeya M, Watanabe A, Osafune K.

A modular differentiation system maps multiple human kidney

lineage from pluripotent stem cells. Cell Rep. 2020;31(1):107476.

https​://doi.org/10.1016/j.celre​p.2020.03.040.

13. Taguchi A, Nishinakamura R. Higher-order kidney organogenesis

from pluripotent stem cells. Cell Stem Cell. 2017;21(6):730-46.

e6. https​://doi.org/10.1016/j.stem.2017.10.011.

14. Mae SI, Ryosaka M, Toyoda T, Matsuse K, Oshima Y, Tsujimoto

H, Okumura S, Shibasaki A, Osafune K. Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochem Biophys Res Commun. 2018;495(1):954–61. https​://doi.

org/10.1016/j.bbrc.2017.11.105.

15. Mae SI, Ryosaka M, Sakamoto S, Matsuse K, Nozaki A, Igami

M, Kabai R, Watanabe A, Osafune K. Expansion of human iPSCderived ureteric bud organoids with repeated branching potential. Cell Rep. 2020;32(4):107963. https​://doi.org/10.1016/j.celre​

p.2020.10796​3.

16. Brown AC, Muthukrishnan SD, Oxburgh L. A synthetic niche for

nephron progenitor cells. Dev Cell. 2015;34(2):229–41. https​://

doi.org/10.1016/j.devce​l.2015.06.021.

17. Tanigawa S, Taguchi A, Sharma N, Perantoni AO, Nishinakamura R. Selective in vitro propagation of nephron progenitors

derived from embryos and pluripotent stem cells. Cell Rep.

2016;15(4):801–13. https:​ //doi.org/10.1016/j.celrep​ .2016.03.076.

18. Li Z, Araoka T, Wu J, Liao H, Li M, Lazo M, Zhou B, Sui Y, Wu

MZ, Tamura I, Xia Y, Beyret E, Matsusaka T, Pastan I, Rodriguez

Esteban C, Guillen I, Guillen P, Campistol JM, Izpisua Belmonte

JC. 3D culture supports long-term expansion of mouse and human

nephrogenic progenitors. Cell Stem Cell. 2016;19(4):516–29.

https​://doi.org/10.1016/j.stem.2016.07.016.

19. Tsujimoto H, Araoka T, Nishi Y, Ohta A, Nakahata T, Osafune

K. Small molecule TCS21311 can replace BMP7 and facilitate

cell proliferation in in vitro expansion culture of nephron progenitor cells. Biochem Biophys Res Commun. 2020. https​://doi.

org/10.1016/j.bbrc.2020.02.130 (in press).

20. Moriya N, Uchiyama H, Asashima M. Induction of pronephric

tubules by activin and retinoic acid in presumptive ectoderm of

Xenopus laevis. Dev Growth Differ. 1993;35:123–8.

21. Brennan HC, Nijjar S, Jones EA. The specification and growth

factor inducibility of the pronephric glomus in Xenopus laevis.

Development. 1999;126(24):5847–56.

22. Osafune K, Nishinakamura R, Komazaki S, Asashima M. In vitro

induction of the pronephric duct in Xenopus explants. Dev

Growth Differ. 2002;44(2):161–7. https:​ //doi.org/10.1046/j.1440169x.2002.00631​.x.

23. Goto T, Hara H, Sanbo M, Masaki H, Sato H, Yamaguchi T, Hochi

S, Kobayashi T, Nakauchi H, Hirabayashi M. Generation of pluripotent stem cell-derived mouse kidney in Sall1-targeted anephric

rats. Nat Commun. 2019;10(1):451. https:​ //doi.org/10.1038/s4146​

7-019-08394​-9.

24. Fujimoto T, Yamanaka S, Tajiri S, Takamura T, Saito Y, Matsumoto N, Matsumoto K, Tachibana T, Okano HJ, Yokoo

T. Generation of human renal vesicles in mouse organ niche

using nephron progenitor cell replacement system. Cell Rep.

2020;32(11):108130. https:​ //doi.org/10.1016/j.celrep​ .2020.10813​

0.

25. Freedman BS, Lam AQ, Sundsbak JL, Iatrino R, Su X, Koon SJ,

Wu M, Daheron L, Harris PC, Zhou J, Bonventre JV. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic

kidney disease patients with PKD1 mutations. J Am Soc Nephrol.

2013;24(10):1571–86. https​://doi.org/10.1681/ASN.20121​11089​

26. Ameku T, Taura D, Sone M, Numata T, Nakamura M, Shiota F,

Toyoda T, Matsui S, Araoka T, Yasuno T, Mae SI, Kobayashi H,

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

584

27. 28. 29. 30. Clinical and Experimental Nephrology (2021) 25:574–584

Kondo N, Kitaoka F, Amano N, Arai S, Ichisaka T, Matsuura N,

Inoue S, Yamamoto T, Takahashi K, Asaka I, Yamada Y, Ubara

Y, Muso E, Fukatsu A, Watanabe A, Sato Y, Nakahata T, Mori

Y, Koizumi A, Nakao K, Yamanaka S, Osafune K. Identification of MMP1 as a novel risk factor for intracranial aneurysms in

ADPKD using iPSC models. Sci Rep. 2015;6:30013. https​://doi.

org/10.1038/srep3​0013.

Forbes TA, Howden SE, Lawlor K, Phipson B, Maksimovic J,

Hale L, Wilson S, Quinlan C, Ho G, Holman K, Bennetts B, Crawford J, Trnka P, Oshlack A, Patel C, Mallett A, Simons C, Little

MH. Patient-iPSC-derived kidney organoids show functional

validation of a ciliopathic renal phenotype and reveal underlying

pathogenetic mechanisms. Am J Hum Genet. 2018;102(5):816–

31. https​://doi.org/10.1016/j.ajhg.2018.03.014.

Tanigawa S, Islam M, Sharmin S, Naganuma H, Yoshimura Y,

Haque F, Era T, Nakazato H, Nakanishi K, Sakuma T, Yamamoto

T, Kurihara H, Taguchi A, Nishinakamura R. Organoids from

nephrotic disease-derived iPSCs identify impaired NEPHRIN

localization and slit diaphragm formation in kidney podocytes.

Stem Cell Reports. 2018;11(3):727–40. https​://doi.org/10.1016/j.

stemc​r.2018.08.003.

Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, Lian

MM, Liu M, Aizawa E, Rodriguez Esteban C, Yong KSM, Chen

Q, Campistol JM, Fang M, Khor CC, Foo JN, Izpisua Belmonte

JC, Xia Y. Generation of human PSC-derived kidney organoids

with patterned nephron segments and a de novo vascular network.

Cell Stem Cell. 2019;25(3):373–879. https​://doi.org/10.1016/j.

stem.2019.06.009.

Czerniecki SM, Cruz NM, Harder JL, Menon R, Annis J, Otto EA,

Gulieva RE, Islas LV, Kim YK, Tran LM, Martins TJ, Pippin JW,

Fu H, Kretzler M, Shankland SJ, Himmelfarb J, Moon RT, Paragas N, Freedman BS. High-throughput screening enhances kidney

organoid differentiation from human pluripotent stem cells and

13

31. 32. 33. 34. 35. enables automated multidimensional phenotyping. Cell Stem Cell.

2018;22(6):929–40. https​://doi.org/10.1016/j.stem.2018.04.022.

Shimizu T, Mae SI, Araoka T, Okita K, Hotta A, Yamagata K,

Osafune K. A novel ADPKD model using kidney organoids

derived from disease-specific human iPSCs. Biochem Biophys

Res Commun. 2020;12:34–43.

Hitomi H, Kasahara T, Katagiri N, Hoshina A, Mae SI, Kotaka M,

Toyohara T, Rahman A, Nakano D, Niwa A, Saito MK, Nakahata

T, Nishiyama A, Osafune K. Human pluripotent stem cell-derived

erythropoietin-producing cells ameliorate renal anemia in mice.

Sci Transl Med. 2017;9(409):eaaj2300. https​://doi.org/10.1126/

scitr​anslm​ed.aaj23​00.

Toyohara T, Mae SI, Sueta SI, Inoue T, Yamagishi Y, Kawamoto

T, Kasahara T, Hoshina A, Toyoda T, Tanaka H, Araoka T, SatoOtsubo A, Takahashi K, Sato Y, Yamaji N, Ogawa S, Yamanaka

S, Osafune K. Cell therapy using human induced pluripotent stem

cell-derived renal progenitors ameliorates acute kidney injury in

mice. Stem Cells Transl Med. 2015;4(9):980–92. https​://doi.

org/10.5966/sctm.2014-0219.

Hoshina A, Kawamoto T, Sueta SI, Mae SI, Araoka T, Tanaka H,

Sato Y, Yamagishi Y, Osafune K. Development of new method to

enrich human iPSC-derived renal progenitors using cell surface

markers. Sci Rep. 2018;8(1):6375. https​://doi.org/10.1038/s4159​

8-018-24714​-3.

Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris

C, Rizzo P, Papadimou E, Novelli R, Benigni A, Remuzzi G,

Morigi M. Renal progenitors derived from human iPSCs engraft

and restore function in a mouse model of acute kidney injury. Sci

Rep. 2015;5:8826. https​://doi.org/10.1038/srep0​8826.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る