リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of Auxin Metabolism in the Ovaries of the Lychee (Litchi chinensis) ‘Salathiel’」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of Auxin Metabolism in the Ovaries of the Lychee (Litchi chinensis) ‘Salathiel’

Osako, Yutaro Yamane, Hisayo Kim, Ryunhee Miyagawa, Hisashi Tao, Ryutaro 京都大学 DOI:10.2503/hortj.UTD-352

2022

概要

Seed size affects the edible portion rate of lychee fruit and is therefore an important trait for fruit quality in lychee (Litchi chinensis). Lychee fruits can be classified into four categories in terms of seed properties: normal, small, aborted seed and seedless. ‘Salathiel’ is known to bear a relatively high rate of aborted-seeded (pseudo-parthenocarpy, stenospermocarpy) and seedless (parthenocarpy) fruit regardless of environmental and cultivation conditions. In other horticultural fruit crops, such as tomato, auxin metabolism and signaling is critical for parthenocarpy, although auxin metabolism has not been characterized in relation to (pseudo) parthenocarpy in lychee. The purpose of this study was to characterize the physiological and morphological properties of maternal reproductive organs in ‘Salathiel’ female flowers, with a specific focus on the associated auxin metabolism. Microscopic observations of the internal structures of the ‘Salathiel’ embryo revealed that ‘Salathiel’ reproductive organ differentiation is similar to that of normal-seeded cultivars. However, the obturator was significantly smaller in ‘Salathiel’ than in other normal-seeded cultivars, suggesting that specific developmental characteristics may exist in the maternal reproductive organs of ‘Salathiel’. Our investigation of indole acetic acid (IAA) contents revealed that IAA levels were significantly higher in ‘Salathiel’ than in other cultivars. Moreover, the IAA metabolite contents also differed significantly between ‘Salathiel’ and the normal-seeded and small-seeded cultivars. Specifically, N-3-hydroxy-2-oxindole-3-acetyl glutamic acid contents were significantly higher in ‘Salathiel’ than in ‘Yu Her Pau’ and ‘Hei Ye’. 3-hydroxy-2-oxindole-3-acetic acid was lower in ‘Yu Her Pau’ and ‘Salathiel’ than in ‘Hei Ye’, while indole-acetylaspartic acid was significantly lower in ‘Salathiel’ compared to ‘Hei Ye’. Expression analyses of the genes related to auxin biosynthesis, catabolism, transport, and signaling indicated that the IAA influx-related and efflux-related gene expression levels were respectively higher and lower in ‘Salathiel’ than in the other cultivars, which is consistent with the increased IAA accumulation in the ‘Salathiel’ ovary. The possible involvement of auxin metabolism in the aborted-seeded and seedless fruit production in ‘Salathiel’ is discussed herein.

この論文で使われている画像

参考文献

Abràmoff, M. D., P. J. Magalhães and S. J. Ram. 2004. Image

processing with imageJ. Biophotonics Int. 11: 36–42.

Abu-Zaitoon, Y. M., K. Bennett, J. Normanly and H. M.

Nonhebel. 2012. A large increase in IAA during

development of rice grains correlates with the expression of

tryptophan aminotransferase OsTAR1 and a grain-specific

YUCCA. Physiol. Plant. 146: 487–499.

Alabadí, D., M. S. Agüero, M. A. Pérez-Amador and J.

Carbonell. 1996. Arginase, arginine decarboxylase, ornithine

decarboxylase, and polyamines in tomato ovaries (Changes

in unpollinated ovaries and parthenocarpic fruits induced by

auxin or gibberellin). Plant Physiol. 112: 1237–1244.

Anand, M., P. S. Kahlon and B. V. C. Mahajan. 2003. Effect of

exogenous application of growth regulators on fruit drop,

cracking and quality of litchi (Litchi chinensis sonn.) cv.

309

Dehradun. Agric. Sci. Digest 23: 191–194.

Arbeloa, A. and M. Herrero. 1987. The significance of the

obturator in the control of pollen tube entry into the ovary in

peach (Prunus persica). Ann. Bot. 60: 681–685.

Arora, R. and N. Singh. 2017. Growth regulators for yield and

quality enhancement in litchi (Litchi chinensis L)—a review.

Int. J. Curr. Microbiol. App. Sci. 6: 2152–2159.

Bons, H. K. and M. Kaur. 2020. Role of plant growth regulators

in improving fruit set, quality and yield of fruit crops: a

review. J. Hortic. Sci. Biotechnol. 95: 137–146.

Cao, J., G. Li, D. Qu, X. Li and Y. Wang. 2020. Into the seed:

Auxin controls seed development and grain yield. Int. J.

Mol. Sci. 21: 1662. DOI: 10.3390/ijms21051662.

Chang, J. W., P. A. Chen and I. Z. Chen. 2017. Litchi breeding

and plant management in Taiwan. p. 31–58. In: M. Kumar,

V. Kumar, R. Prasad and A. Varma (eds.). The Lychee

Biotechnology. Springer Nature, Singapore.

Chen, S., Y. Zhou, Y. Chen and J. Gu. 2018. Fastp: An ultra-fast

all-in-one FASTQ preprocessor. Bioinformatics 34: i884–

i890.

Cho, M. and H. T. Cho. 2013. The function of ABCB transporters

in auxin transport. Plant Signal. Behav. 8: e22990. DOI:

10.4161/psb.22990.

Chu, Y. C., T. S. Lin and J. C. Chang. 2015. Pollen effects on fruit

set, seed weight, and shriveling of ‘73-S-20’ litchi- with

special reference to artificial induction of parthenocarpy.

HortScience 50: 369–373.

Cousin, M. and M. El Maataoui. 1998. Female reproductive

organs in self-compatible almond (Prunus dulcis (Mill.)

D.A. Webb) Lauranne and fertilization patterns. Sci. Hortic.

72: 287–297.

Dharmasiri, N., S. Dharmasiri and M. Estelle. 2005. The F-box

protein TIR1 is an auxin receptor. Nature 435: 441–445.

Dos Santos, R. C., L. M. Ribeiro, M. O. Mercadante-Simões,

M. R. Costa, S. Nietsche and M. C. T. Pereira. 2014.

Stenospermy and seed development in the “Brazilian seed‐

less” variety of sugar apple (Annona squamosa). An. Acad.

Bras. Cienc. 86: 2101–2108.

Else, M. A., A. P. Stankiewicz-Davies, C. M. Crisp and C. J.

Atkinson. 2004. The role of polar auxin transport through

pedicels of Prunus avium L. in relation to fruit development

and retention. J. Exp. Bot. 55: 2099–2109.

Fang, H. H., W. L. Lee, S. H. Yang, C. C. Hsu and Y. S. Liang.

2018. Investigation on composition changes of sour and

sweet substances during the fruit development of lychee

(Litchi chinensis Sonn.). J. Taiwan Soc. Hortic. Sci. 64: 137–

146 (In Chinese with English abstract).

Fukuda, F., R. Yoshimura, H. Matsuoka and N. Kubota. 2006.

Relationship between fruit enlargement and seed

development with respect to physiological fruit drop in

‘Shimizu Hakuto’ Peach. J. Japan. Soc. Hort. Sci. 75: 213–

218.

Gonçalves, J. C., G. Diogo, M. T. Coelho, N. Vidal and S.

Amâncio. 2008. Quantitation of endogenous levels of IAA,

IAAsp and IBA in micro-propagated shoots of hybrid chest‐

nut pre-treated with IBA. In Vitro Cell. Dev. Biol. Plan. 44:

412–418.

Gonçalves, V. D., M. C. Pires and O. K. Yamanishi. 2014. Syn‐

thetic auxin 3-5-6 TPA increased fruit size and retention of

“Bengal” lychee in Brazil. Acta Hortic. 1042: 65–72.

Goodstein, D. M., S. Shu, R. Howson, R. Neupane, R. D. Hayes,

J. Fazo, T. Mitros, W. Dirks, U. Hellsten, N. Putnam and

D. S. Rokhsar. 2012. Phytozome: A comparative platform

for green plant genomics. Nucleic Acids Res. 40: 1178–

1186.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

310

Y. Osako, H. Yamane, R. Kim, H. Miyagawa and R. Tao

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A.

Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury,

Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N.

Rhind, F. Di Palma, B. W. Birren, C. Nusbaum, K. LindbladToh, N. Friedman and A. Regev. 2011. Full-length transcrip‐

tome assembly from RNA-Seq data without a reference

genome. Nat. Biotechnol. 29: 644–652.

Guilfoyle, T. J. and G. Hagen. 2007. Auxin response factors.

Curr. Opin. Plant Biol. 10: 453–460.

Hirahara, Y. 2018. Project for the creation of new fruit production

areas for the future: 1. Research on the characteristics of

lychee cultivars. Bull. Subtropic. Plant Branch Miyazaki

Agric. Res. Inst. 2018: 148–149 (In Japanese).

Katoh, K. and D. M. Standley. 2013. MAFFT multiple sequence

alignment software version 7: improvements in performance

and usability. Mol. Biol. Evol. 30: 772–780.

Kawamoto, T. 2003. Use of a new adhesive film for the prepara‐

tion of multi-purpose fresh-frozen sections from hard tis‐

sues, whole-animals, insects and plants. Arch. Histol. Cytol.

66: 123–143.

Kays, S. J. 1999. Preharvest factors affecting appearance. Post‐

harvest Biol. Technol. 15: 233–247.

Kim, R., Y. Osako, H. Yamane, R. Tao and H. Miyagawa. 2021.

Quantitative analysis of auxin metabolites in lychee flowers.

Biosci. Biotechnol. Biochem. 85: 467–475.

Koul, B. and J. Singh. 2017. Lychee biology and biotechnology

p. 137–192. In: M. Kumar, V. Kumar, R. Prasad and A.

Varma (eds.). The Lychee Biotechnology. Springer Nature,

Singapore.

Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018.

MEGA X: molecular evolutionary genetics analysis across

computing platforms. Mol. Biol. Evol. 35: 1547–1579.

Kurnlawati, B. and Hamim. 2009. Physiological responses and

fruit retention of carambola fruit (Averrhoa carambola L.)

induced by 2,4-D and GA3. HAYATI J. Biosci. 16: 9–14.

Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read align‐

ment with Bowtie 2. Nat. Methods 9: 357–359.

Langmead, B., C. Wilks, V. Antonescu and R. Charles. 2019.

Scaling read aligners to hundreds of threads on generalpurpose processors. Bioinformatics 35: 421–432.

Li, H. 2011. A statistical framework for SNP calling, mutation

discovery, association mapping and population genetical

parameter estimation from sequencing data. Bioinformatics

27: 2987–2993.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,

G. Marth, G. Abecasis and R. Durbin. 2009. The sequence

alignment/map format and SAMtools. Bioinformatics 25:

2078–2079.

Liu, S., Y. Zhang, Q. Feng, L. Qin, C. Pan, A. T. Lamin-Samu

and G. Lu. 2018. Tomato AUXIN RESPONSE FACTOR 5

regulates fruit set and development via the mediation of

auxin and gibberellin signaling. Sci. Rep. 8: 2971. DOI:

10.1038/s41598-018-21315-y.

Lora, J., J. I. Hormaza, M. Herrero and C. S. Gasser. 2011. Seed‐

less fruits and the disruption of a conserved genetic pathway

in angiosperm ovule development. Proc. Natl. Acad. Sci.

USA 108: 5461–5465.

Losada, J. M. and M. Herrero. 2017. Pollen tube access to the

ovule is mediated by glycoprotein secretion on the obturator

of apple (Malus × domestica, Borkh). Ann. Bot. 119: 989–

1000.

Ludwig-Müller, J. 2011. Auxin conjugates: Their role for plant

development and in the evolution of land plants. J. Exp. Bot.

62: 1757–1773.

Mano, Y., K. Nemoto, M. Suzuki, H. Seki, I. Fujii and T.

Muranaka. 2010. The AMI1 gene family: Indole-3-acetamide

hydrolase functions in auxin biosynthesis in plants. J. Exp.

Bot. 61: 25–32.

Mashiguchi, K., K. Tanaka, T. Sakai, S. Sugawara, H. Kawaide,

M. Natsume, A. Hanada, T. Yaeno, K. Shirasu, H. Yao, P.

McSteen, Y. Zhao, K. I. Hayashi, Y. Kamiya and H.

Kasahara. 2011. The main auxin biosynthesis pathway in

Arabidopsis. Proc. Natl. Acad. Sci. USA 108: 18512–18517.

Matsuda, H. and H. Higuchi. 2019. Effects of the pollen parent

on the fruit set and seed type of ‘Bengal’, ‘Chakrapat’, and

‘Tai So’ lychee cultivars. Trop. Agr. Develop. 63: 79–82.

Matsuo, S., K. Kikuchi, K. Nagasuga, H. Ueno and S. Imanishi.

2018. Transcriptional regulation of auxin metabolic-enzyme

genes during tomato fruit development. Sci. Hortic. 241:

329–338.

Matsuo, S., K. Miyatake, M. Endo, S. Urashimo, T. Kawanishi, S.

Negoro, S. Shimakoshi and H. Fukuoka. 2020. Loss of func‐

tion of the Pad-1 aminotransferase gene, which is involved

in auxin homeostasis, induces parthenocarpy in Solanaceae

plants. Proc. Natl. Acad. Sci. USA 117: 12784–12790.

Menzel, C. 2002. The lychee crop in Asia and the Pacific. RAP

Publ. FAO. Bangkok.

Menzel, C. M., K. R. Chapman, B. F. Paxton and D. R. Simpson.

1986. Growth and yield of lychee cultivars in subtropical

queensland. Aust. J. Exp. Agric. 26: 261–265.

Menzel, C. M., X. Huang and C. Liu. 2005. Cultivars and plant

improvement. p. 59–87. In: C. M. Menzel and G. K. Waite

(eds.). Litchi and longan: botany, production and uses. CABI

Publishing. Oxfordshire.

Mitra, S. K. and P. K. Pathak. 2010. Litchi production in the AsiaPacific region. Acta Hortic. 863: 29–36.

Möller, B. and D. Weijers. 2009. Auxin control of embryo pat‐

terning. Cold Spring Harb. Perspect. Biol. 1: a001545. DOI:

10.1101/cshperspect.a001545.

Ni, D. A., L. J. Wang, C. H. Ding and Z. H. Xu. 2001. Auxin

distribution and transport during embryogenesis and seed

germination of Arabidopsis. Cell Res. 11: 273–278.

Ohsugi, R. 2003. Sink-source relationship and crop yield. Kagaku

To Seibutsu 41: 366–373 (In Japanese).

Osterc, G., M. M. Petkovšek and F. Stampar. 2016. Quantifica‐

tion of IAA metabolites in the early stages of adventitious

rooting might be predictive for subsequent differences in

rooting response. J. Plant Growth Regul. 35: 534–542.

Patro, R., G. Duggal, M. I. Love, R. A. Irizarry and C. Kingsford.

2017. Salmon provides fast and bias-aware quantification of

transcript expression. Nat. Methods 14: 417–419.

Péret, B., K. Swarup, A. Ferguson, M. Seth, Y. Yang, S. Dhondt,

N. James, I. Casimiro, P. Perry, A. Syed, H. Yang, J.

Reemmer, E. Venison, C. Howells, M. A. Perez-Amador, J.

Yun, J. Alonso, G. T. S. Beemster, L. Laplaze, A. Murphy,

M. J. Bennett, E. Nielsen and R. Swarup. 2012. AUX/LAX

genes encode a family of auxin influx transporters that per‐

form distinct functions during Arabidopsis development.

Plant Cell 24: 2874–2885.

R Core Team. 2021. R: A language and environment for statisti‐

cal computing. R Foundation for Statistical Computing,

Vienna, Austria. <https://www.R-project.org/>.

Ren, Z. and X. Wang. 2016. SlTIR1 is involved in crosstalk of

phytohormones, regulates auxin-induced root growth and

stimulates stenospermocarpic fruit formation in tomato.

Plant Sci. 253: 13–20.

Robert, H. S., W. Grunewald, M. Sauer, B. Cannoot, M. Soriano,

R. Swarup, D. Weijers, M. Bennett, K. Boutilier and J.

Friml. 2015. Plant embryogenesis requires AUX/LAXmediated auxin influx. Development 142: 702–711.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Hort. J. 91 (3): 302–311. 2022.

Stern, R. A. and S. Gazit. 1999. The synthetic auxin 3,5,6-TPA

reduces fruit drop and increases yield in “Kaimana” litchi.

J. Hort. Sci. Biotechnol. 74: 203–205.

Stern, R. A., D. Stern, M. Harpaz and S. Gazit. 2000. Applica‐

tions of 2,4,5-TP, 3,5,6-TPA, and combinations thereof

increase lychee fruit size and yield. HortScience 35: 661–

664.

Takisawa, R., S. Koeda and T. Nakazaki. 2019. Effects of the

pat-2 gene and auxin biosynthesis inhibitor on seed produc‐

tion in parthenocarpic tomatoes (Solanum lycopersicum L.).

Hort. J. 88: 481–487.

Teale, W. D., I. A. Paponov and K. Palme. 2006. Auxin in action:

Signalling, transport and the control of plant growth and

development. Nat. Rev. Mol. Cell Biol. 7: 847–859.

Tiwari, A., R. Offringa and E. Heuvelink. 2012. Auxin-induced

fruit set in Capsicum annuum L. requires downstream gib‐

berellin biosynthesis. J. Plant Growth Regul. 31: 570–578.

Vieten, A., S. Vanneste, J. Wiśniewska, E. Benková, R.

Benjamins, T. Beeckman, C. Luschnig and J. Friml. 2005.

Functional redundancy of PIN proteins is accompanied by

auxin-dependent cross-regulation of PIN expression.

Development 132: 4521–4531.

Wang, H., B. Jones, Z. Li, P. Frasse, C. Delalande, F. Regad, S.

Chaabouni, A. Latché, J. C. Pech and M. Bouzayen. 2005.

311

The tomato Aux/IAA transcription factor IAA9 is involved in

fruit development and leaf morphogenesis. Plant Cell 17:

2676–2692.

Wang, H. C., B. Lai and X. M. Huang. 2017. Litchi fruit set,

development, and maturation. p. 1–30. In: M. Kumar, V.

Kumar, R. Prasad and A. Varma (eds.). The Lychee Biotech‐

nology. Springer Nature, Singapore.

Xie, D. R., X. S. Ma, M. Z. Rahman, M. C. Yang, X. M. Huang,

J. G. Li and H. C. Wang. 2019. Thermo-sensitive sterility

and self-sterility underlie the partial seed abortion phenotype

of Litchi chinensis. Sci. Hortic. 247: 156–164.

Zhang, C., D. Xie, T. Bai, X. Luo, F. Zhang, Z. Ni and Y. Chen.

2020. Diversity of a large collection of natural populations

of mango (Mangifera indica Linn.) revealed by agromorphological and quality traits. Diversity 12: 27. DOI:

10.3390/d12010027.

Zhang, J., Z. Wu, F. Hu, L. Liu, X. Huang, J. Zhao and H. Wang.

2018. Aberrant seed development in Litchi chinensis is asso‐

ciated with the impaired expression of cell wall invertase

genes. Hortic. Res. 5: 39. DOI: 10.1038/s41438-018-0042-1.

Zhu, Y. J. 2008. Seed development and fruit-set enhancement by

girdling in ‘No Mai Tsz (73-S-20)’ Litchi (Litchi chinensis

Sonn.). Master Thesis. National Taiwan Univ., Taipei (In

Chinese with English abstract).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る